Hyperchaos in a New Family of Simple CNNs

In this paper we demonstrate hyperchaotic dynamics in a new family of simple Cellular Neural Networks (CNNs) which is a one-dimensional regular array of four cells. The Lyapunov spectrum is calculated in a range of parameters, the bifurcation plots and several important phase portraits are presented as well.

[1]  T. Tsubone,et al.  Hyperchaos from a 4-D manifold piecewise-linear system , 1998 .

[2]  T. Saito An approach toward higher dimensional hysteresis chaos generators , 1990 .

[3]  Yu Zhang,et al.  Hyperchaotic synchronisation scheme for digital speech communication , 1999 .

[4]  G. Grassi,et al.  A new approach to design cellular neural networks for associative memories , 1997 .

[5]  P. Arena,et al.  Hyperchaos from cellular neural networks , 1995 .

[6]  O. Rössler An equation for hyperchaos , 1979 .

[7]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[8]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[9]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[10]  Sergio Rinaldi,et al.  Peak-to-Peak Dynamics: a Critical Survey , 2000, Int. J. Bifurc. Chaos.

[11]  A. Cenys,et al.  Hyperchaotic oscillator with gyrators , 1997 .

[12]  Leon O. Chua,et al.  Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation , 1995 .

[13]  Xiao-Song Yang,et al.  Hyperchaos in a Simple CNN , 2006, Int. J. Bifurc. Chaos.

[14]  Toshimichi Saito,et al.  A simple hyperchaos generator based on impulsive switching , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  M. Brucoli,et al.  Associative memory design using discrete-time second-order neural networks with local interconnections , 1997 .

[16]  S. Mascolo,et al.  A system theory approach for designing cryptosystems based on hyperchaos , 1999 .

[17]  K. Ramasubramanian,et al.  A comparative study of computation of Lyapunov spectra with different algorithms , 1999, chao-dyn/9909029.

[18]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.