High accuracy measurements of nanometer-scale distances between fluorophores at the single-molecule level

To uncover the mechanisms of molecular machines it is useful to probe their structural conformations. Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for measuring intra-molecular shape changes of single-molecules, but is confined to distances of 2-8 nm. Current super-resolution measurements are error prone at <25 nm. Thus, reliable high-throughput distance information between 8-25 nm is currently difficult to achieve. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1 nm accuracy at any distance >2 nm, using a standard TIRF microscope and open-source software. We applied our two-color localization method to uncover a ∼4 nm conformational change in the “stalk” of the motor protein dynein, revealing unexpected flexibility in this antiparallel coiled-coil domain. These new methods enable high-accuracy distance measurements of single-molecules that can be used over a wide range of length scales.

[1]  Marcel Knossow,et al.  The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement , 2014, Nature Communications.

[2]  A. K. Boal,et al.  The Cation−π Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification , 2017, Biochemistry.

[3]  Tomohiro Shima,et al.  Two modes of microtubule sliding driven by cytoplasmic dynein , 2006, Proceedings of the National Academy of Sciences.

[4]  Colin Echeverría Aitken,et al.  An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. , 2008, Biophysical journal.

[5]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[6]  A. Carter Crystal clear insights into how the dynein motor moves , 2013, Journal of Cell Science.

[7]  Kai Zhang,et al.  The structure of the dynactin complex and its interaction with dynein , 2015, Science.

[8]  G. Kurisu,et al.  Structural Change in the Dynein Stalk Region Associated with Two Different Affinities for the Microtubule. , 2016, Journal of molecular biology.

[9]  P. Schatz,et al.  Biotinylation of proteins in vivo and in vitro using small peptide tags. , 2000, Methods in enzymology.

[10]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[11]  H. Flyvbjerg,et al.  Optimized localization-analysis for single-molecule tracking and super-resolution microscopy , 2010, Nature Methods.

[12]  Sjoerd Stallinga,et al.  The effect of background on localization uncertainty in single emitter imaging , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[13]  Nico Stuurman,et al.  Single-molecule observations of neck linker conformational changes in the kinesin motor protein , 2006, Nature Structural &Molecular Biology.

[14]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[15]  Jay B. West,et al.  The distribution of target registration error in rigid-body point-based registration , 2001, IEEE Transactions on Medical Imaging.

[16]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[17]  U. Rothlisberger,et al.  Directed evolution of the suicide protein O⁶-alkylguanine-DNA alkyltransferase for increased reactivity results in an alkylated protein with exceptional stability. , 2012, Biochemistry.

[18]  Dae-Sil Lee,et al.  Crystal structure of Thermus aquaticus DNA polymerase , 1995, Nature.

[19]  Hitoshi Sakakibara,et al.  Recent progress in dynein structure and mechanism. , 2005, Current opinion in cell biology.

[20]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[21]  Alain Pitiot,et al.  Piecewise Affine Registration of Biological Images , 2003, WBIR.

[22]  S. Stallinga,et al.  Accuracy of the gaussian point spread function model in 2D localization microscopy. , 2010, Optics express.

[23]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[24]  G. Phillips,et al.  The molecular structure of green fluorescent protein , 1996, Nature Biotechnology.

[25]  Henrik Flyvbjerg,et al.  A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques. , 2006, Biophysical journal.

[26]  A. Ardeshir Goshtasby,et al.  Image registration by local approximation methods , 1988, Image Vis. Comput..

[27]  I. Cheeseman,et al.  Cortical Dynein and Asymmetric Membrane Elongation Coordinately Position the Spindle in Anaphase , 2013, Cell.

[28]  C. Walsh,et al.  Site-specific protein labeling by Sfp phosphopantetheinyl transferase , 2006, Nature Protocols.

[29]  H. Flyvbjerg,et al.  Optimized measurements of separations and angles between intra-molecular fluorescent markers , 2015, Nature Communications.

[30]  Gira Bhabha,et al.  Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes , 2014, Science.

[31]  R. Vale,et al.  How kinesin waits between steps , 2007, Nature.

[32]  T. Ha,et al.  Single-molecule high-resolution imaging with photobleaching. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Ram,et al.  Resolution beyond Rayleigh's criterion: a modern resolution measure with applications to single molecule imaging , 2007, 2007 IEEE Dallas Engineering in Medicine and Biology Workshop.

[34]  Paul R Selvin,et al.  Polarization effect on position accuracy of fluorophore localization. , 2006, Optics express.

[35]  A. Carter,et al.  Structure of human cytoplasmic dynein-2 primed for its powerstroke , 2014, Nature.

[36]  C. Hoogenraad,et al.  Bicaudal D Family of Motor Adaptors: Linking Dynein Motility to Cargo Binding. , 2016, Trends in cell biology.

[37]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[38]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[39]  J. Spudich,et al.  Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  L. Pearl,et al.  Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex , 2006, Nature.

[41]  Philip Tinnefeld,et al.  Fluorescence and super-resolution standards based on DNA origami , 2012, Nature Methods.

[42]  D. Julius,et al.  TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action , 2016, Nature.

[43]  Samara L. Reck-Peterson,et al.  Single-Molecule Analysis of Dynein Processivity and Stepping Behavior , 2006, Cell.

[44]  Peter A. Combs,et al.  Cytoplasmic Dynein Moves Through Uncoordinated Stepping of the AAA+ Ring Domains , 2012, Science.

[45]  S. Burgess,et al.  Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding , 2009, Nature Structural &Molecular Biology.

[46]  J. Elf,et al.  Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes , 2016, Science.

[47]  Steven Chu,et al.  Subnanometre single-molecule localization, registration and distance measurements , 2010, Nature.

[48]  Neil L Kelleher,et al.  Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[50]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Michael Fitzpatrick,et al.  Fiducial registration error and target registration error are uncorrelated , 2009, Medical Imaging.

[52]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[53]  Andrew N. Holding,et al.  Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to coordinate recruitment of cargos to dynein. , 2013, Genes & development.

[54]  R. Vallee,et al.  The role of the dynein stalk in cytoplasmic and flagellar motility , 1998, European Biophysics Journal.

[55]  S. Ram,et al.  Localization accuracy in single-molecule microscopy. , 2004, Biophysical journal.

[56]  N. Stuurman,et al.  Interactions between coiled-coil proteins: Drosophila lamin Dm0 binds to the bicaudal-D protein. , 1999, European journal of cell biology.

[57]  Nico Stuurman,et al.  Computer Control of Microscopes Using µManager , 2010, Current protocols in molecular biology.

[58]  Taekjip Ha,et al.  Single-molecule methods leap ahead , 2014, Nature Methods.

[59]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[60]  Samara L. Reck-Peterson,et al.  The Affinity of the Dynein Microtubule-binding Domain Is Modulated by the Conformation of Its Coiled-coil Stalk*[boxs] , 2005, Journal of Biological Chemistry.

[61]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[62]  Johannes Söding,et al.  The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis , 2016, Nucleic Acids Res..

[63]  U. Endesfelder,et al.  A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment , 2014, Histochemistry and Cell Biology.

[64]  P. Tinnefeld,et al.  DNA origami–based standards for quantitative fluorescence microscopy , 2014, Nature Protocols.

[65]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[66]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[67]  Ronald D Vale,et al.  The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[68]  S. Hell,et al.  Fluorescence nanoscopy in cell biology , 2017, Nature Reviews Molecular Cell Biology.

[69]  M. Sauer,et al.  Photometry unlocks 3D information from 2D localization microscopy data , 2016, Nature Methods.

[70]  R. Vallee,et al.  Dynein: An ancient motor protein involved in multiple modes of transport. , 2004, Journal of neurobiology.