Defining requirements and identifying relevant technologies in astrophotonics

Astrophotonics offers a solution to some of the problems of building instruments for the next generation of telescopes through the use of photonic devices to miniaturise and simplify instruments. It has already proved its worth in interferometry over the last decade and is now being applied to nightsky background suppression. Astrophotonics offers a radically different approach to highly-multiplexed spectroscopy to the benefit of galaxy surveys such as are required to determine the evolution of the cosmic equation of state. The Astrophotonica Europa partnership funded by the EU via OPTICON is undertaking a wide-ranging survey of the technological opportunities and their applicability to high-priority astrophysical goals of the next generation of observatories. Here we summarise some of the conclusions.

[1]  Joss Bland-Hawthorn,et al.  Astrophotonics: a new era for astronomical instruments. , 2009, Optics express.

[2]  Pierre Benech,et al.  On-chip spectro-detection for fully integrated coherent beam combiners. , 2009, Optics express.

[3]  J. Bland-Hawthorn,et al.  The case for OH suppression at near-infrared wavelengths , 2008, 0801.3870.

[4]  J Fedeli,et al.  Experimental evidence for superprism phenomena in SOI photonic crystals. , 2004, Optics express.

[5]  D. Mawet,et al.  An image of an exoplanet separated by two diffraction beamwidths from a star , 2010, Nature.

[6]  J. R. Allington-Smith,et al.  Strategies for spectroscopy on extremely large telescopes – III. Remapping switched fibre systems , 2009 .

[7]  P. J. Moreira,et al.  Performance of astronomical beam combiner prototypes fabricated by hybrid sol-gel technology. , 2010, Optics express.

[8]  Lucas Labadie,et al.  Mid-infrared guided optics: a perspective for astronomical instruments. , 2009, Optics express.

[9]  J. R. Allington-Smith,et al.  Strategies for spectroscopy on Extremely Large Telescopes – II. Diverse-field spectroscopy , 2009, 0908.1319.

[10]  Stephen T. Ridgway,et al.  FLUOR fibered beam combiner at the CHARA array , 2003, SPIE Astronomical Telescopes + Instrumentation.

[11]  David M. Shemo,et al.  Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration. , 2009, Optics express.

[12]  Gleb Vdovin,et al.  Fabrication of an imaging diffraction grating for use in a MEMS-based optical microspectrograph , 2008 .

[13]  Jeremy Allington-Smith,et al.  Ultrafast laser inscription: an enabling technology for astrophotonics. , 2009, Optics express.

[14]  David Mouillet,et al.  AMBER : Instrument description and first astrophysical results Special feature AMBER , the near-infrared spectro-interferometric three-telescope VLTI instrument , 2007 .

[15]  T Erdogan,et al.  All-fiber wavemeter and Fourier-transform spectrometer. , 1999, Optics letters.

[16]  France,et al.  Integrated optics for astronomical interferometry - II. First laboratory white-light interferograms , 1999 .

[17]  Joss Bland-Hawthorn,et al.  New age fibers: the children of the photonic revolution , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  V. Podolskiy,et al.  Highly confined optical modes in nanoscale metal-dielectric multilayers , 2007, physics/0703137.

[19]  Joss Bland-Hawthorn,et al.  Efficient multi-mode to single-mode coupling in a photonic lantern. , 2009, Optics express.

[20]  Jason C W Corbett Sampling of the telescope image plane using single- and few-mode fibre arrays. , 2009, Optics express.

[21]  G. Perrin,et al.  Pupil remapping for high contrast astronomy: results from an optical testbed. , 2009, Optics express.

[22]  Jeremy Allington-Smith,et al.  Astrophotonic spectroscopy: defining the potential advantage , 2009, 0910.4361.

[23]  Roger Haynes,et al.  Photonic OH suppression of the infrared night sky: first on-sky results , 2009 .

[24]  J S Lawrence,et al.  Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy. , 2009, Optics express.

[25]  Etienne Le Coarer,et al.  Realization of the compact static Fourier transform spectrometer LLIFTS in glass integrated optics. , 2009, Optics letters.

[26]  Wesley A. Traub,et al.  THERMAL INFRARED STELLAR INTERFEROMETRY USING SINGLE-MODE GUIDED OPTICS : FIRST RESULTS WITH THE TISIS EXPERIMENT ON IOTA , 1999 .

[27]  T. Ebbesen,et al.  Plasmonic photon sorters for spectral and polarimetric imaging , 2008 .

[28]  A Katzir,et al.  Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers. , 2008, Applied optics.

[29]  Thomas Pertsch,et al.  Three-dimensional photonic combiner for optical astro interferometry , 2010, Astronomical Telescopes + Instrumentation.

[30]  R. Wolffenbuttel MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range , 2005 .

[31]  P. Royer,et al.  Wavelength-scale stationary-wave integrated Fourier-transform spectrometry , 2007, 0708.0272.