A consistent formation free energy definition for multicomponent clusters in quantum thermochemistry

[1]  F. Keshavarz,et al.  New Particle Formation from the Vapor Phase: From Barrier-Controlled Nucleation to the Collisional Limit , 2021, The journal of physical chemistry letters.

[2]  J. Smith,et al.  Atmospheric clusters to nanoparticles: Recent progress and challenges in closing the gap in chemical composition , 2020 .

[3]  Hanna Vehkamäki,et al.  Modeling the formation and growth of atmospheric molecular clusters: A review , 2020, Journal of Aerosol Science.

[4]  J. Elm An Atmospheric Cluster Database Consisting of Sulfuric Acid, Bases, Organics, and Water , 2019, ACS Omega.

[5]  H. Vehkamäki,et al.  Rate enhancement in collisions of sulfuric acid molecules due to long-range intermolecular forces , 2019, Atmospheric Chemistry and Physics.

[6]  A. Kürten New particle formation from sulfuric acid and ammonia: nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of conditions , 2019, Atmospheric Chemistry and Physics.

[7]  H. Vehkamäki,et al.  Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation. , 2018, The Journal of chemical physics.

[8]  I. Riipinen,et al.  New particle formation from sulfuric acid and amines: Comparison of monomethylamine, dimethylamine, and trimethylamine , 2017 .

[9]  T. Petäjä,et al.  Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures , 2016 .

[10]  D. Brus,et al.  Effect of ions on sulfuric acid‐water binary particle formation: 1. Theory for kinetic‐ and nucleation‐type particle formation and atmospheric implications , 2016 .

[11]  H. Vehkamäki,et al.  Free energy barrier in the growth of sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters. , 2013, The Journal of chemical physics.

[12]  Hanna Vehkamäki,et al.  Thermodynamics and kinetics of atmospheric aerosol particle formation and growth. , 2012, Chemical Society reviews.

[13]  Matthew J. McGrath,et al.  Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations , 2011 .

[14]  Renyi Zhang,et al.  Getting to the Critical Nucleus of Aerosol Formation , 2010, Science.

[15]  D. Truhlar,et al.  Homogeneous nucleation with magic numbers: aluminum. , 2009, The Journal of chemical physics.

[16]  H. Vehkamäki,et al.  Origin of the failure of classical nucleation theory: incorrect description of the smallest clusters. , 2007, Physical review letters.

[17]  K. Froyd,et al.  Experimental Thermodynamics of Cluster Ions Composed of H2SO4 and H2O. 1. Positive Ions , 2003 .

[18]  Barbara E. Wyslouzil,et al.  Binary nucleation kinetics. I. Self‐consistent size distribution , 1995 .

[19]  D. Saltz Using the noninteracting cluster theory to predict the properties of real vapor , 1994 .

[20]  H. Reiss,et al.  The Factor 1/S in the Classical Theory of Nucleation , 1994 .

[21]  M. Kulmala,et al.  The self-consistency correction to homogeneous nucleation: Extension to binary systems , 1992 .

[22]  S. Girshick,et al.  Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor , 1990 .

[23]  David Jackson McGinty,et al.  Vapor phase homogeneous nucleation and the thermodynamic properties of small clusters of argon atoms , 1971 .

[24]  E. R. Cohen,et al.  Translation-Rotation Paradox in the Theory of Nucleation , 1968 .

[25]  W. Courtney,et al.  Remarks on Homogeneous Nucleation , 1961 .

[26]  Howard Reiss,et al.  The Kinetics of Phase Transitions in Binary Systems , 1950 .

[27]  I. Riipinen,et al.  New Particle Formation and Growth: Creating a New Atmospheric Phase Interface , 2018 .

[28]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .