Transport properties in normal-metal Bi 2 Pd 3 S 2 and superconducting Bi 2 Pd 3 Se 2

The transport properties of the parkerite-related compounds ${\text{Bi}}_{2}{\text{Pd}}_{3}{X}_{2}$ $(X=\text{S,Se})$ were studied. The electrical resistivities of both compounds show typical metallic behavior up to 400 K. Resistivity and specific heat measurements at low temperatures reveal that ${\text{Bi}}_{2}{\text{Pd}}_{3}{\text{Se}}_{2}$ is superconducting below 1 K. On the other hand, ${\text{Bi}}_{2}{\text{Pd}}_{3}{\text{S}}_{2}$ does not show a bulk superconducting transition down to 0.35 K. In the normal state, the electronic specific heat coefficient $\ensuremath{\gamma}$ and the Debye temperature ${\ensuremath{\Theta}}_{\text{D}}$ are found to be $5.9\text{ }\text{mJ}/\text{mol}\text{ }{\text{K}}^{2}$ and 170 K, respectively for ${\text{Bi}}_{2}{\text{Pd}}_{3}{\text{S}}_{2}$, and $8.3\text{ }\text{mJ}/\text{mol}\text{ }{\text{K}}^{2}$ and 150 K, respectively for ${\text{Bi}}_{2}{\text{Pd}}_{3}{\text{Se}}_{2}$. In the superconducting state for ${\text{Bi}}_{2}{\text{Pd}}_{3}{\text{Se}}_{2}$, the upper critical field at zero temperature for ${\text{Bi}}_{2}{\text{Pd}}_{3}{\text{Se}}_{2}$ is 290 mT. From the electronic specific heat in the superconducting temperature range, it was found that ${\text{Bi}}_{2}{\text{Pd}}_{3}{\text{Se}}_{2}$ belongs to an $s$-wave weak-coupling superconductor.

[1]  Y. Hinatsu,et al.  Charge-density-wave superconductorBi2Rh3Se2 , 2007 .

[2]  Y. Hinatsu,et al.  Superconductivity in ternary chalcogenides Bi2Ni3X2 (X = S, Se) , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  A. Clauss Die Kristallstruktur von Ni3Bi2Se2 , 1977, Naturwissenschaften.

[4]  L. Kloo,et al.  New metal-rich sulfides Ni6SnS2 and Ni9Sn2S2 with a 2D metal framework : Synthesis, crystal structure, and bonding , 2003 .

[5]  Ling Chen,et al.  Remarkable metal-rich ternary chalcogenides Sc14M3Te8 (M = Ru, Os). , 2003, Journal of the American Chemical Society.

[6]  A. Olenev,et al.  Crystal and electronic structure of Ni3Bi2S2 (parkerite) , 2001 .

[7]  F. Izumi,et al.  A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolites , 2000 .

[8]  Ishihara,et al.  Specific heat of an anisotropic superconductor: Nb3X4 with X=S, Se, and Te. , 1996, Physical review. B, Condensed matter.

[9]  Ishihara,et al.  Thermodynamic properties of an anisotropic superconductor: Nb3S4. , 1993, Physical review. B, Condensed matter.

[10]  T. S. Radhakrishnan,et al.  Synthesis and electrical properties of shandite-parkerite phases, A2M3Ch2 , 1988 .

[11]  B. Harbrecht,et al.  M2Ta9S6 (M ≡ Fe, Co, Ni): A metal-rich channel structure with condensed tetrakaidecahedral tantalum clusters , 1985 .

[12]  G. C. Danielson,et al.  Heat capacity of high-purity lanthanum , 1980 .

[13]  M. Zabel,et al.  Ternäre Chalkogenide M3M2′X2 mit Shandit-Struktur / Ternary Chalcogenides M3M2′X2 with Shandite-Type Structure , 1979 .

[14]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[15]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[16]  R. Huebener Phonon Scattering by Lattice Vacancies in Platinum , 1966 .

[17]  M. A. Peacock,et al.  On parkerite and shandite and the crystal structure of Ni3Pb2S2 , 1950 .