Combinatorial Landscapes

Fitness landscapes have proven to be a valuable concept in evolutionary biology, combinatorial optimization, and the physics of disordered systems. A fitness landscape is a mapping from a configuration space into the real numbers. The configuration space is equipped with some notion of adjacency, nearness, distance, or accessibility. Landscape theory has emerged as an attempt to devise suitable mathematical structures for describing the ``static'' properties of landscapes as well as their influence on the dynamics of adaptation. In this review we focus on the connections of landscape theory with algebraic combinatorics and random graph theory, where exact results are available.

[1]  Vassilis Zissimopoulos,et al.  Autocorrelation Coefficient for the Graph Bipartitioning Problem , 1998, Theor. Comput. Sci..

[2]  Gunar E. Liepins,et al.  Polynomials, Basis Sets, and Deceptiveness in Genetic Algorithms , 1991, Complex Syst..

[3]  J. Friedman Some geometric aspects of graphs and their eigenfunctions , 1993 .

[4]  R. Merris A survey of graph laplacians , 1995 .

[5]  Michael Randolph Garey,et al.  Johnson: "computers and intractability , 1979 .

[6]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[7]  K. Nemoto,et al.  Metastable states of the SK spin glass model , 1988 .

[8]  Arnold Neumaier,et al.  Molecular Modeling of Proteins and Mathematical Prediction of Protein Structure , 1997, SIAM Rev..

[9]  L. Kallel,et al.  Comparison of Summary Statistics of Fitness Landscapes , 2000 .

[10]  Christian M. Reidys,et al.  Neutrality in fitness landscapes , 2001, Appl. Math. Comput..

[11]  G. F. Joyce,et al.  Directed molecular evolution. , 1992, Scientific American.

[12]  Thomas Bäck,et al.  Evolutionary Algorithms: The Role of Mutation and Recombination , 2000 .

[13]  P. Stadler,et al.  Metastable states in short-ranged p-spin glasses , 1999, cond-mat/9908439.

[14]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[15]  D. L. Powers Graph Partitioning by Eigenvectors , 1988 .

[16]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[17]  Schuster,et al.  Physical aspects of evolutionary optimization and adaptation. , 1989, Physical review. A, General physics.

[18]  P. Stadler,et al.  Random field models for fitness landscapes , 1999 .

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  B. Derrida,et al.  Evolution in a flat fitness landscape , 1991 .

[21]  Richard P. Stanley Acyclic orientations of graphs , 1973, Discret. Math..

[22]  Karl J. Niklas,et al.  Adaptive walks through fitness landscapes for early vascular land plants , 1997 .

[23]  Vassilis Zissimopoulos,et al.  On the Classification of NP-complete Problems in Terms of Their Correlation Coefficient , 2000, Discret. Appl. Math..

[24]  P. Schuster,et al.  Stationary mutant distributions and evolutionary optimization. , 1988, Bulletin of mathematical biology.

[25]  Christian M. Reidys,et al.  Random Induced Subgraphs of Generalizedn-Cubes , 1997 .

[26]  H. Kubinyi QSAR : Hansch analysis and related approaches , 1993 .

[27]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[28]  T. Cech,et al.  Self-splicing RNA: implications for evolution. , 1985, International review of cytology.

[29]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[30]  B. Mohar Some applications of Laplace eigenvalues of graphs , 1997 .

[31]  Michael S. Waterman,et al.  COMPUTATION OF GENERATING FUNCTIONS FOR BIOLOGICAL MOLECULES , 1980 .

[32]  N. J. Fine,et al.  The generalized Walsh functions , 1950 .

[33]  Peter F. Stadler,et al.  Correlation length, isotropy and meta-stable states , 1997 .

[34]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[35]  S Wright,et al.  "Surfaces" of selective value. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[36]  O. Catoni Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .

[37]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[38]  Sergiu Hart,et al.  A note on the edges of the n-cube , 1976, Discret. Math..

[39]  M. Klin,et al.  Cellular Rings and Groups of Automorphisms of Graphs , 1994 .

[40]  Christian M. Reidys,et al.  Neutral networks: a combinatorial perspective , 1999, Adv. Complex Syst..

[41]  G. Wagner,et al.  What is the difference between models of error thresholds and Muller's ratchet? , 1993 .

[42]  M Cieplak,et al.  Energy landscapes, supergraphs, and "folding funnels" in spin systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[44]  Alan S. Perelson,et al.  Molecular evolution on rugged landscapes : proteins, RNA and the immune system : the proceedings of the Workshop on Applied Molecular Evolution and the Maturation of the Immune Response, held March, 1989 in Santa Fe, New Mexico , 1991 .

[45]  R. Buerger The Mathematical Theory of Selection, Recombination, and Mutation , 2000 .

[46]  Boris Zgrablic,et al.  On adjacency-transitive graphs , 1998, Discret. Math..

[47]  Scott E. Page,et al.  Walsh Functions, Schema Variance, and Deception , 1992, Complex Syst..

[48]  G. Wagner,et al.  The topology of the possible: formal spaces underlying patterns of evolutionary change. , 2001, Journal of theoretical biology.

[49]  J. Crutchfield,et al.  Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths? , 1999, Bulletin of mathematical biology.

[50]  Tarazona Error thresholds for molecular quasispecies as phase transitions: From simple landscapes to spin-glass models. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[51]  Thomas Wiehe,et al.  Model dependency of error thresholds: the role of fitness functions and contrasts between the finite and infinite sites models , 1997 .

[52]  Peter F. Stadler,et al.  Landscapes: Complex Optimization Problems and Biopolymer Structures , 1994, Comput. Chem..

[53]  Christian M. Reidys,et al.  Discrete, sequential dynamical systems , 2001, Discret. Math..

[54]  M. Newman,et al.  Effects of selective neutrality on the evolution of molecular species , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  J. Leydold,et al.  Discrete Nodal Domain Theorems , 2000, math/0009120.

[56]  Alden H. Wright,et al.  The Simple Genetic Algorithm and the Walsh Transform: Part I, Theory , 1998, Evolutionary Computation.

[57]  Flyvbjerg,et al.  Evolution in a rugged fitness landscape. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[58]  C. A. Macken,et al.  Protein evolution on rugged landscapes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[60]  Paul G. Mezey,et al.  Potential Energy Hypersurfaces , 1987 .

[61]  Christian M. Reidys,et al.  Elements of a theory of simulation II: sequential dynamical systems , 2000, Appl. Math. Comput..

[62]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[63]  Donald L. Miller,et al.  Exact Solution of Large Asymmetric Traveling Salesman Problems , 1991, Science.

[64]  Christian V. Forst,et al.  Structural Constraints and Neutrality in RNA , 1996, German Conference on Bioinformatics.

[65]  Claus O. Wilke,et al.  Adaptive evolution on neutral networks , 2001, Bulletin of mathematical biology.

[66]  David E. Goldberg,et al.  Genetic Algorithms and the Variance of Fitness , 1991, Complex Syst..

[67]  XI FachbereichInformatik Finite Markov Chain Results in Evolutionary Computation: a Tour D'horizon , 1998 .

[68]  D. G. Higman Coherent configurations , 1975 .

[69]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[70]  J. Doye,et al.  Evolution of the Potential Energy Surface with Size for Lennard-Jones Clusters , 1999, cond-mat/9903305.

[71]  E. D. Weinberger,et al.  Fourier and Taylor series on fitness landscapes , 1991, Biological Cybernetics.

[72]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[73]  Koen Frenken,et al.  Interdependencies, Nearly-Decomposability and Adaptation , 1999 .

[74]  Jun Wang,et al.  Quasi-abelian cayley graphs and parsons graphs , 1997, Eur. J. Comb..

[75]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[76]  R. Forman Witten–Morse theory for cell complexes††Partially supported by the National Science Foundation. , 1998 .

[77]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[78]  Peter F. Stadler,et al.  RNA In Silico The Computational Biology of RNA Secondary Structures , 1999, Adv. Complex Syst..

[79]  H. van der Holst,et al.  Topological and Spectral Graph Characterizations , 1996 .

[80]  H. Waelbroeck,et al.  Effective degrees of freedom in genetic algorithms , 1998 .

[81]  Peter F. Stadler,et al.  Fast Fourier Transform for Fitness Landscapes , 2002 .

[82]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[83]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[84]  Peter F. Stadler,et al.  RNA Structures with Pseudo-Knots - Graph-Theoretical and Combinatorial Properties , 1997 .

[85]  János Komlós,et al.  Largest random component of ak-cube , 1982, Comb..

[86]  Bärbel M. R. Stadler,et al.  Adaptive platform dynamics in multi-party spatial voting , 1999, Adv. Complex Syst..

[87]  Vassilis Zissimopoulos,et al.  On the Quality of Local Search for the Quadratic Assignment Problem , 1998, Discret. Appl. Math..

[88]  Christian M. Reidys,et al.  On Acyclic Orientations and Sequential Dynamical Systems , 2001, Adv. Appl. Math..

[89]  Rainer E. Burkard,et al.  Linear Assignment Problems and Extensions , 1999, Handbook of Combinatorial Optimization.

[90]  M. Klin,et al.  Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms. I. Permutation Groups and , 1995 .

[91]  A. Perelson,et al.  Evolutionary walks on rugged landscapes , 1991 .

[92]  P. Stadler,et al.  Landscape Statistics of the Low Autocorrelated Binary String Problem , 2000, cond-mat/0006478.

[93]  G. Wagner,et al.  Population dependent Fourier decomposition of fitness landscapes over recombination spaces: Evolvability of complex characters , 2000, Bulletin of mathematical biology.

[94]  Christian M. Reidys,et al.  Bio-molecular Shapes and Algebraic Structures , 1996, Comput. Chem..

[95]  P. Schuster Landscapes and molecular evolution , 1997 .

[96]  Günter P. Wagner,et al.  Asymmetry of Configuration Space Induced by Unequal Crossover: Implications for a Mathematical Theory of Evolutionary Innovation , 1999, Artificial Life.

[97]  W. Hordijk Correlation analysis of the synchronizing-CA landscape , 1997 .

[98]  Michael Famulok,et al.  All you wanted to know about SELEX , 2004, Molecular Biology Reports.

[99]  Terry Jones,et al.  One Operator, One Landscape , 1995 .

[100]  Hung T. Nguyen,et al.  A course in stochastic processes , 1996 .

[101]  J. Farris The Logical Basis of Phylogenetic Analysis , 2004 .

[102]  P. A. P. Moran,et al.  Random processes in genetics , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[103]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[104]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[105]  P. Stadler Landscapes and their correlation functions , 1996 .

[106]  Jack W. Szostak,et al.  An RNA motif that binds ATP , 1993, Nature.

[107]  Julian Francis Miller,et al.  On the nature of two-bit multiplier landscapes , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[108]  Douglas J. Klein,et al.  Partial Orderings in Chemistry , 1997, J. Chem. Inf. Comput. Sci..

[109]  L. Barnett Ruggedness and neutrality—the NKp family of fitness landscapes , 1998 .

[110]  Weinberger,et al.  RNA folding and combinatory landscapes. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[111]  D. Bartel,et al.  One sequence, two ribozymes: implications for the emergence of new ribozyme folds. , 2000, Science.

[112]  Walter Kern,et al.  On the Depth of Combinatorial Optimization Problems , 1993, Discret. Appl. Math..

[113]  P. Higgs,et al.  Barrier heights between ground states in a model of RNA secondary structure , 1998 .

[114]  Peter F. Stadler,et al.  Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry , 2002, J. Chem. Inf. Comput. Sci..

[115]  T. Cech RNA as an enzyme. , 1986, Biochemistry international.

[116]  Rieger The number of solutions of the Thouless-Anderson-Palmer equations for p-spin-interaction spin glasses. , 1992, Physical review. B, Condensed matter.

[117]  P. Schuster,et al.  RNA multi-structure landscapes , 1993, European Biophysics Journal.

[118]  D. Rockmore,et al.  Generalized FFT's- A survey of some recent results , 1996, Groups and Computation.

[119]  Peter F. Stadler,et al.  Amplitude Spectra of Fitness Landscapes , 1998, Adv. Complex Syst..

[120]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[121]  M. Huynen,et al.  Smoothness within ruggedness: the role of neutrality in adaptation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[122]  J. Gillespie MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE , 1984, Evolution; international journal of organic evolution.

[123]  E. Gardner,et al.  Metastable states of a spin glass chain at 0 temperature , 1986 .

[124]  Christopher L. Barrett,et al.  Elements of a Theory of Simulation , 1995, ECAL.

[125]  Peter F. Stadler,et al.  Local Minima of p-Spin Models , 1995 .

[126]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[127]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[128]  J. Fontanari,et al.  LETTER TO THE EDITOR: Finite-size scaling of the error threshold transition in finite populations , 1998, cond-mat/9809209.

[129]  P. Schuster,et al.  Generic properties of combinatory maps: neutral networks of RNA secondary structures. , 1997, Bulletin of mathematical biology.

[130]  D. Mills,et al.  An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[131]  D. Kent,et al.  Convergence functions and their related topologies , 1964 .

[132]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[133]  D. Vere-Jones Markov Chains , 1972, Nature.

[134]  Exploring QSAR. , 1995, Environmental science & technology.

[135]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[136]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[137]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration I. Neutral networks , 1995 .

[138]  M. Karplus,et al.  The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics , 1997 .

[139]  Peter F. Stadler,et al.  Combinatorics of RNA Secondary Structures , 1998, Discret. Appl. Math..

[140]  F H Westheimer Polyribonucleic acids as enzymes. , 1986, Nature.

[141]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[142]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[143]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[144]  J. Fontanari,et al.  Error threshold in finite populations , 1997, cond-mat/9709247.

[145]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[146]  John H. Holland Genetic Algorithms and Classifier Systems: Foundations and Future Directions , 1987, ICGA.

[147]  Christian M. Reidys Acyclic Orientations of Random Graphs , 1998 .

[148]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[149]  Peter F. Stadler,et al.  Random walks and orthogonal functions associated with highly symmetric graphs , 1995, Discret. Math..

[150]  M. Mézard,et al.  The simplest spin glass , 1984 .

[151]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration II. Structures of neutral networks and shape space covering , 1996 .

[152]  Bart Naudts,et al.  A comparison of predictive measures of problem difficulty in evolutionary algorithms , 2000, IEEE Trans. Evol. Comput..

[153]  P. Higgs,et al.  Population evolution on a multiplicative single-peak fitness landscape. , 1996, Journal of theoretical biology.

[154]  C V Forst,et al.  Replication and mutation on neutral networks , 2001, Bulletin of mathematical biology.

[155]  P. Stadler,et al.  Design of Multi-Stable RNA Molecules , 2000 .

[156]  James P. Crutchfield,et al.  Evolving Globally Synchronized Cellular Automata , 1995, ICGA.

[157]  Béla Bollobás,et al.  Random Graphs , 1985 .

[158]  Alden H. Wright,et al.  The Simple Genetic Algorithm and the Walsh Transform: Part II, The Inverse , 1998, Evolutionary Computation.

[159]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[160]  F. Westheimer,et al.  Biochemistry: Polyribonucleic acids as enzymes , 1986, Nature.

[161]  P. Schuster,et al.  A computer model of evolutionary optimization. , 1987, Biophysical chemistry.

[162]  N. Fine On the Walsh functions , 1949 .

[163]  Darrell C. Kent A note on pretopologies , 1968 .

[164]  Gunar E. Liepins,et al.  Deceptiveness and Genetic Algorithm Dynamics , 1990, FOGA.

[165]  D. Heidrich,et al.  Properties of Chemically Interesting Potential Energy Surfaces , 1991 .

[166]  Victor Reiner,et al.  Perron–Frobenius type results and discrete versions of nodal domain theorems , 1999 .

[167]  Peter F. Stadler,et al.  Algebraic Theory of Recombination Spaces , 1997, Evolutionary Computation.

[168]  Weinberger,et al.  Local properties of Kauffman's N-k model: A tunably rugged energy landscape. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[169]  Luitpold Babel,et al.  STABCOL: Graph Isomorphism Testing Based on the Weisfeiler-Leman Algorithm , 1997 .

[170]  Lov K. Grover Local search and the local structure of NP-complete problems , 1992, Oper. Res. Lett..

[171]  Krzysztof Malarz,et al.  Dynamics in Eigen Quasispecies Model , 1998 .

[172]  G. Wagner,et al.  Modeling genetic architecture: a multilinear theory of gene interaction. , 2001, Theoretical population biology.

[173]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[174]  Pedro Larrañaga,et al.  Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators , 1999, Artificial Intelligence Review.

[175]  Robin Forman,et al.  Morse Theory and Evasiveness , 2000, Comb..

[176]  John H. Miller,et al.  Adaptive Parties in Spatial Elections , 1992, American Political Science Review.

[177]  D. G. Higman Intersection matrices for finite permutation groups , 1967 .

[178]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[179]  Lee Altenberg,et al.  The Schema Theorem and Price's Theorem , 1994, FOGA.

[180]  R. Forman Morse Theory for Cell Complexes , 1998 .

[181]  P. Stadler Fitness Landscapes , 1993 .

[182]  A. Bray,et al.  Metastable states in spin glasses with short-ranged interactions , 1981 .

[183]  Daniel A. Levinthal Adaptation on rugged landscapes , 1997 .

[184]  Peter F. Stadler,et al.  Complex Adaptations and the Structure of Recombination Spaces , 1997 .

[185]  Peter F. Stadler,et al.  Landscapes on spaces of trees , 2002, Appl. Math. Comput..

[186]  J. Onuchic,et al.  The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. , 2000, Advances in protein chemistry.

[187]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[188]  F. Tanaka,et al.  Analytic theory of the ground state properties of a spin glass. II. XY spin glass , 1980 .

[189]  D. Yee,et al.  Principles of protein folding — A perspective from simple exact models , 1995, Protein science : a publication of the Protein Society.

[190]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[191]  M. Eigen,et al.  The Hypercycle , 2004, Naturwissenschaften.

[192]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[193]  Michael S. Waterman,et al.  Combinatorics of RNA Hairpins and Cloverleaves , 1979 .

[194]  Joseph C. Culberson,et al.  Mutation-Crossover Isomorphisms and the Construction of Discriminating Functions , 1994, Evolutionary Computation.

[195]  A. Perelson,et al.  Protein evolution on partially correlated landscapes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[196]  Daniel N. Rockmore,et al.  Some applications of generalized FFT's , 1997, Groups and Computation.

[197]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[198]  O. Catoni Simulated annealing algorithms and Markov chains with rare transitions , 1999 .

[199]  P. Schuster,et al.  Self-replication with errors. A model for polynucleotide replication. , 1982, Biophysical chemistry.

[200]  M. Nowak,et al.  Error thresholds of replication in finite populations mutation frequencies and the onset of Muller's ratchet. , 1989, Journal of theoretical biology.

[201]  Peter F. Stadler,et al.  Towards a theory of landscapes , 1995 .

[202]  Correlation structure of the landscape of the graph-bipartitioning problem , 1992 .

[203]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[204]  Miguel Angel Virasoro,et al.  Energy barriers in SK-spin glass model , 1989 .

[205]  L. Darrell Whitley,et al.  Fundamental Principles of Deception in Genetic Search , 1990, FOGA.

[206]  Wim Hordijk,et al.  A Measure of Landscapes , 1996, Evolutionary Computation.

[207]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[208]  Josselin Garnier,et al.  Efficiency of Local Search with Multiple Local Optima , 2001, SIAM J. Discret. Math..

[209]  P. Schuster,et al.  IR-98-039 / April Continuity in Evolution : On the Nature of Transitions , 1998 .

[210]  Günter P. Wagner,et al.  Recombination induced hypergraphs: A new approach to mutation-recombination isomorphism , 1996, Complex..

[211]  Peter F. Stadler,et al.  Fitness landscapes arising from the sequence-structure maps of biopolymers , 1999 .

[212]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[213]  Jennifer Ryan,et al.  The Depth and Width of Local Minima in Discrete Solution Spaces , 1995, Discret. Appl. Math..