Fast GPU Implementation of Sparse Signal Recovery from Random Projections

We consider the problem of sparse signal recovery from a small number of random projections (measurements). This is a well known NP-hard to solve combinatorial optimization problem. A frequently used approach is based on greedy iterative procedures, such as the Matching Pursuit (MP) algorithm. Here, we discuss a fast GPU implementation of the MP algorithm, based on the recently released NVIDIA CUDA API and CUBLAS library. The results show that the GPU version is substantially faster (up to 31 times) than the highly optimized CPU version based on CBLAS (GNU Scientific Library).

[1]  J. CandesE.,et al.  Near-Optimal Signal Recovery From Random Projections , 2006 .

[2]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[3]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[4]  E.J. Candes Compressive Sampling , 2022 .

[5]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[6]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[7]  Sacha Krstulovic,et al.  Mptk: Matching Pursuit Made Tractable , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[8]  Stuart A. Kauffman,et al.  On the Sparse Reconstruction of Gene Networks , 2008, J. Comput. Biol..