Smoothing Multi-Scan Target Tracking in Clutter

This paper presents a fixed interval smoothing multi-scan algorithm for target tracking in clutter. Both the probability of target existence and the target trajectory probability density function are calculated using all available measurements. This improves both the false track discrimination and the target trajectory estimate. The fixed interval smoothing fuses the forward and the backward multi-scan predictions, to obtain the smoothing predictions and smoothing innovations. Both trajectory estimates and the data association probabilities are calculated using the smoothing innovations. An overlapping batch procedure is described which limits the smoothing delay.

[1]  S. Stankovic,et al.  Integrated probabilistic data association (IPDA) , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[2]  D. Fraser,et al.  The optimum linear smoother as a combination of two optimum linear filters , 1969 .

[3]  Robin J. Evans,et al.  Integrated probabilistic data association , 1994, IEEE Trans. Autom. Control..

[4]  Roy L. Streit,et al.  Maximum likelihood method for probabilistic multihypothesis tracking , 1994, Defense, Security, and Sensing.

[5]  P. S. Maybeck,et al.  Cost-function-based gaussian mixture reduction for target tracking , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[6]  D. Salmond Mixture reduction algorithms for target tracking , 1989 .

[7]  Y. Bar-Shalom,et al.  Automatic track formation in clutter with a recursive algorithm , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[8]  Kim B. Housewright,et al.  Derivation and evaluation of improved tracking filter for use in dense multitarget environments , 1974, IEEE Trans. Inf. Theory.

[9]  Taek Lyul Song,et al.  Adaptive Clutter Measurement Density Estimation for Improved Target Tracking , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[10]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[11]  Subhash Challa,et al.  Augmented State Integrated Probabilistic Data Association Smoothing for Automatic Track Initiation in Clutter , 2006, J. Adv. Inf. Fusion.

[12]  David J. Salmond Mixture reduction algorithms for target tracking in clutter , 1990 .

[13]  R.J. Evans,et al.  Integrated track splitting filter - efficient multi-scan single target tracking in clutter , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[15]  Robin J. Evans,et al.  Fundamentals of Object Tracking , 2011 .

[16]  Ba-Ngu Vo,et al.  Bayesian Filtering With Random Finite Set Observations , 2008, IEEE Transactions on Signal Processing.

[17]  R. Evans,et al.  Clutter map information for data association and track initialization , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Taek Lyul Song,et al.  Gaussian mixtures in multi-target tracking: a look at gaussian mixture probability hypothesis density and integrated track splitting , 2012 .

[19]  D. Musicki,et al.  Tracking in clutter using IMM-IPDA-based algorithms , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[21]  A. K. Mahalanabis,et al.  Improved multi-target tracking in clutter by PDA smoothing , 1990 .

[22]  R.J. Evans,et al.  Multiscan Multitarget Tracking in Clutter with Integrated Track Splitting Filter , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Taek Lyul Song,et al.  Target Tracking With Target State Dependent Detection , 2011, IEEE Transactions on Signal Processing.

[24]  Bing Chen,et al.  Tracking of multiple maneuvering targets in clutter using IMM/JPDA filtering and fixed-lag smoothing , 2001, Autom..

[25]  Darko Musicki,et al.  Joint Integrated Probabilistic Data Association - JIPDA , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[26]  Wolfgang Koch,et al.  Fixed-interval retrodiction approach to Bayesian IMM-MHT for maneuvering multiple targets , 2000, IEEE Trans. Aerosp. Electron. Syst..

[27]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[28]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[29]  Taek Lyul Song,et al.  Smoothing innovations and data association with IPDA , 2012, Autom..

[30]  Taek Lyul Song,et al.  Point target probabilistic multiple hypothesis tracking , 2011 .

[31]  Samuel S. Blackman,et al.  Multiple-Target Tracking with Radar Applications , 1986 .