Hybrid-Range Partitioning Skate y: A New Deelustering Strategy for Multiprocessor 8 atabase Machines

In shared-nothing multiprocessor database machines, the relational operators that form a query are executed on the processors where the relations they reference are stored. In general, as the number of processors over which a relation is declustered is increased, the execution time for the query is decreased because more processors are used, each of which has to process fewer tuples. However, for some queries increasing the degree of declustering actually increases the query’s response time as the result of increased overhead for query startup, communication, and termination. In general, the declustering strategy selected for a relation can have a significant impact on the overall performance of the system. This paper presents the hybrid-range partitioning strategy, a new declustering strategy for multiprocessor database machines. In addition to describing its characteristics and operation, its performance is compared to that of the current partitioning strategies provided by the Gamma database machine.

[1]  Günter von Bültzingsloewen Optimizing SQL queries for parallel execution , 1989, SGMD.

[2]  Toby J. Teorey,et al.  A comparative analysis of disk scheduling policies , 1972, CACM.

[3]  Donovan A. Schneider,et al.  The Gamma Database Machine Project , 1990, IEEE Trans. Knowl. Data Eng..

[4]  Adel Said Elmaghraby,et al.  Letter to the editor , 2018, Journal of Orofacial Orthopedics-fortschritte Der Kieferorthopadie.

[5]  David J. DeWitt,et al.  A performance analysis of the gamma database machine , 1988, SIGMOD '88.

[6]  Michael Stonebraker,et al.  The Design of XPRS , 1988, VLDB.

[7]  David J. DeWitt,et al.  A multiuser performance analysis of alternative declustering strategies , 1990, [1990] Proceedings. Sixth International Conference on Data Engineering.

[8]  The Tandem Performance Group,et al.  A benchmark of NonStop SQL on the debit credit transaction , 1988, SIGMOD '88.

[9]  G. von Bultzingsloewen Optimizing SQL queries for parallel execution , 1989, SIGMOD 1989.

[10]  David J. DeWitt,et al.  Design and implementation of the wisconsin storage system , 1985, Softw. Pract. Exp..

[11]  Sakti Pramanik,et al.  Optimal file distribution for partial match retrieval , 1988, SIGMOD '88.

[12]  John S. Sobolewski,et al.  Disk allocation for Cartesian product files on multiple-disk systems , 1982, TODS.

[13]  Michael Stonebraker,et al.  The Case for Shared Nothing , 1985, HPTS.

[14]  Andrew S. Tanenbaum,et al.  Computer Networks , 1981 .

[15]  David J. DeWitt,et al.  Benchmarking Database Systems A Systematic Approach , 1983, VLDB.

[16]  William Alexander,et al.  Process and dataflow control in distributed data-intensive systems , 1988, SIGMOD '88.

[17]  Toby J. Teorey,et al.  A comparative analysis of disk scheduling policies , 1972, CACM.

[18]  Sakti Pramanik,et al.  Database Processing Models in Parallel Processing Systems , 1989, IWDM.

[19]  David J. DeWitt,et al.  GAMMA - A High Performance Dataflow Database Machine , 1986, VLDB.

[20]  Herb Schwetman,et al.  An Experiment on Response Time Scalability in Bubba , 1989, IWDM.

[21]  David J. DeWitt,et al.  A performance evaluation of four parallel join algorithms in a shared-nothing multiprocessor environment , 1989, SIGMOD '89.

[22]  Haran Boral Parallelism and Data Management , 1988, JCDKB.

[23]  Tom W. Keller,et al.  Data placement in Bubba , 1988, SIGMOD '88.

[24]  David J. DeWitt,et al.  A methodology for database system performance evaluation , 1984, SIGMOD '84.

[25]  Miron Livny,et al.  Multi-disk management algorithms , 1987, SIGMETRICS '87.