smart-KG: Partition-Based Linked Data Fragments for Querying Knowledge Graphs
暂无分享,去创建一个
[1] Maribel Acosta,et al. Characteristic sets profile features: Estimation and application to SPARQL query planning , 2022, Semantic Web.
[2] Maribel Acosta,et al. Robust query processing for linked data fragments , 2022, Semantic Web.
[3] Axel Polleres,et al. WiseKG: Balanced Access to Web Knowledge Graphs , 2021, WWW.
[4] Bin Yao,et al. A survey of RDF stores & SPARQL engines for querying knowledge graphs , 2021, The VLDB Journal.
[5] Maribel Acosta,et al. A Framework for Federated SPARQL Query Processing over Heterogeneous Linked Data Fragments , 2021, ArXiv.
[6] Maribel Acosta,et al. Cost- and Robustness-Based Query Optimization for Linked Data Fragments , 2020, SEMWEB.
[7] K. Hose,et al. Star Pattern Fragments: Accessing Knowledge Graphs through Star Patterns , 2020, ArXiv.
[8] Axel Polleres,et al. A More Decentralized Vision for Linked Data , 2020, DeSemWeb@ISWC.
[9] Maribel Acosta,et al. SMART-KG: Hybrid Shipping for SPARQL Querying on the Web , 2020, WWW.
[10] Erik G. Hoel,et al. Distributed Spatial and Spatio-Temporal Join on Apache Spark , 2019, ACM Trans. Spatial Algorithms Syst..
[11] Wim Martens,et al. Navigating the Maze of Wikidata Query Logs , 2019, WWW.
[12] Stefan Decker,et al. Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371) , 2019, Dagstuhl Reports.
[13] Hala Skaf-Molli,et al. SaGe: Web Preemption for Public SPARQL Query Services , 2019, WWW.
[14] Muhammad Saleem,et al. An Empirical Evaluation of RDF Graph Partitioning Techniques , 2018, EKAW.
[15] Walid G. Aref,et al. WORQ: Workload-Driven RDF Query Processing , 2018, SEMWEB.
[16] Ruben Verborgh,et al. Comunica: A Modular SPARQL Query Engine for the Web , 2018, SEMWEB.
[17] Pablo de la Fuente,et al. Characterising RDF data sets , 2018, J. Inf. Sci..
[18] Michael Färber,et al. PRoST: Distributed Execution of SPARQL Queries Using Mixed Partitioning Strategies , 2018, EDBT.
[19] Jorge Pérez,et al. A Formal Framework for Comparing Linked Data Fragments , 2017, SEMWEB.
[20] Jens Lehmann,et al. Distributed Semantic Analytics Using the SANSA Stack , 2017, SEMWEB.
[21] Steffen Staab,et al. Koral: A Glass Box Profiling System for Individual Components of Distributed RDF Stores , 2017, BLINK/NLIWoD3@ISWC.
[22] Panos Kalnis,et al. A Survey and Experimental Comparison of Distributed SPARQL Engines for Very Large RDF Data , 2017, Proc. VLDB Endow..
[23] Wim Martens,et al. An analytical study of large SPARQL query logs , 2017, The VLDB Journal.
[24] Aidan Hogan,et al. Canonical Forms for Isomorphic and Equivalent RDF Graphs , 2017, ACM Trans. Web.
[25] Nikos Mamoulis,et al. Extended Characteristic Sets: Graph Indexing for SPARQL Query Optimization , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).
[26] Olaf Hartig,et al. Bindings-Restricted Triple Pattern Fragments , 2016, OTM Conferences.
[27] Pierre Genevès,et al. SPARQLGX in Action: Efficient Distributed Evaluation of SPARQL with Apache Spark , 2016, SEMWEB.
[28] Panos Kalnis,et al. Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning , 2016, The VLDB Journal.
[29] Ruben Verborgh,et al. Triple Pattern Fragments: A low-cost knowledge graph interface for the Web , 2016, J. Web Semant..
[30] Nieves R. Brisaboa,et al. Practical compressed string dictionaries , 2016, Inf. Syst..
[31] Georg Lausen,et al. S2RDF: RDF Querying with SPARQL on Spark , 2015, Proc. VLDB Endow..
[32] Muhammad Saleem,et al. FEASIBLE: A Feature-Based SPARQL Benchmark Generation Framework , 2015, SEMWEB.
[33] Maribel Acosta,et al. Networks of Linked Data Eddies: An Adaptive Web Query Processing Engine for RDF Data , 2015, SEMWEB.
[34] Muhammad Saleem,et al. LSQ: The Linked SPARQL Queries Dataset , 2015, SEMWEB.
[35] I. Manolescu,et al. CliqueSquare in action: Flat plans for massively parallel RDF queries , 2015, 2015 IEEE 31st International Conference on Data Engineering.
[36] Miguel A. Martínez-Prieto,et al. Serializing RDF in Compressed Space , 2015, 2015 Data Compression Conference.
[37] Huajun Chen,et al. SparkRDF: Elastic Discreted RDF Graph Processing Engine With Distributed Memory , 2014, 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT).
[38] M. Tamer Özsu,et al. Diversified Stress Testing of RDF Data Management Systems , 2014, SEMWEB.
[39] Georg Lausen,et al. Sempala: Interactive SPARQL Query Processing on Hadoop , 2014, SEMWEB.
[40] Rinke Hoekstra,et al. Structural Properties as Proxy for Semantic Relevance in RDF Graph Sampling , 2014, SEMWEB.
[41] Jürgen Umbrich,et al. Strategies for Executing Federated Queries in SPARQL1.1 , 2014, SEMWEB.
[42] Markus Krötzsch,et al. Wikidata , 2014, Commun. ACM.
[43] Ioana Manolescu,et al. RDF in the clouds: a survey , 2014, The VLDB Journal.
[44] Martin Theobald,et al. TriAD: a distributed shared-nothing RDF engine based on asynchronous message passing , 2014, SIGMOD Conference.
[45] Jürgen Umbrich,et al. SPARQL Web-Querying Infrastructure: Ready for Action? , 2013, SEMWEB.
[46] Ling Liu,et al. Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning , 2013, Proc. VLDB Endow..
[47] Gerhard Weikum,et al. YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia: Extended Abstract , 2013, IJCAI.
[48] Katja Hose,et al. WARP: Workload-aware replication and partitioning for RDF , 2013, 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW).
[49] Min Wang,et al. EAGRE: Towards scalable I/O efficient SPARQL query evaluation on the cloud , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).
[50] Axel Polleres,et al. Binary RDF representation for publication and exchange (HDT) , 2013, J. Web Semant..
[51] Katja Hose,et al. Partout: a distributed engine for efficient RDF processing , 2012, WWW.
[52] Mark A. Musen,et al. Using SPARQL to Query BioPortal Ontologies and Metadata , 2012, SEMWEB.
[53] Bhavani M. Thuraisingham,et al. Jena-HBase: A Distributed, Scalable and Effcient RDF Triple Store , 2012, SEMWEB.
[54] Haofen Wang,et al. HadoopRDF: A Scalable Semantic Data Analytical Engine , 2012, ICIC.
[55] Miguel A. Martínez-Prieto,et al. Exchange and Consumption of Huge RDF Data , 2012, ESWC.
[56] Daniel J. Abadi,et al. Scalable SPARQL querying of large RDF graphs , 2011, Proc. VLDB Endow..
[57] Georg Lausen,et al. PigSPARQL: mapping SPARQL to Pig Latin , 2011, SWIM '11.
[58] Guido Moerkotte,et al. Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[59] Frank van Harmelen,et al. Finding the Achilles Heel of the Web of Data: Using Network Analysis for Link-Recommendation , 2010, SEMWEB.
[60] Richard E. Schantz,et al. High-performance, massively scalable distributed systems using the MapReduce software framework: the SHARD triple-store , 2010, PSI EtA '10.
[61] Michael Martin,et al. Improving the Performance of Semantic Web Applications with SPARQL Query Caching , 2010, ESWC.
[62] Daniel J. Abadi,et al. SW-Store: a vertically partitioned DBMS for Semantic Web data management , 2009, The VLDB Journal.
[63] Michael Schmidt,et al. Foundations of SPARQL query optimization , 2008, ICDT '10.
[64] Praveen Paritosh,et al. Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.
[65] Jens Lehmann,et al. DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.
[66] Jürgen Umbrich,et al. YARS2: A Federated Repository for Querying Graph Structured Data from the Web , 2007, ISWC/ASWC.
[67] Daniel J. Abadi,et al. Scalable Semantic Web Data Management Using Vertical Partitioning , 2007, VLDB.
[68] Marcelo Arenas,et al. Semantics and complexity of SPARQL , 2006, TODS.
[69] Alberto O. Mendelzon,et al. Foundations of semantic web databases , 2004, PODS.
[70] Michael Ley,et al. The DBLP Computer Science Bibliography: Evolution, Research Issues, Perspectives , 2002, SPIRE.
[71] Christiane Fellbaum,et al. Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.
[72] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[73] Laura M. Haas,et al. Optimizing Queries Across Diverse Data Sources , 1997, VLDB.
[74] Jürgen Umbrich,et al. SPARQLES: Monitoring public SPARQL endpoints , 2017, Semantic Web.
[75] Jens Lehmann,et al. DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.
[76] Thomas Neumann,et al. Exploiting the query structure for efficient join ordering in SPARQL queries , 2014, EDBT.
[77] Yves Raimond,et al. RDF 1.1 Primer , 2014 .
[78] M. Tamer Özsu,et al. chameleon-db: a Workload-Aware Robust RDF Data Management System , 2013 .
[79] A. Tangel,et al. A high performance , 2013 .
[80] Andreas Harth,et al. CumulusRDF: Linked Data Management on Nested Key-Value Stores , 2011 .
[81] Gerhard Weikum,et al. WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .