Einstein's Special Relativity: The Hyperbolic Geometric Viewpoint
暂无分享,去创建一个
[1] Abraham Albert Ungar,et al. A Gyrovector Space Approach to Hyperbolic Geometry , 2009, A Gyrovector Space Approach to Hyperbolic Geometry.
[2] C. Adler. Does mass really depend on velocity, dad? , 1987 .
[3] Left Distributive Quasigroups and Gyrogroups , 2001 .
[5] P. M. Morse,et al. Relativity: The Special Theory , 1957 .
[6] H. Piaggio. The Theory of Relativity , 1916, The Mathematical Gazette.
[7] On the Origin of the Dark Matter/Energy in the Universe and the Pioneer Anomaly , 2008 .
[8] S. Walter. The non-Euclidean style of Minkowskian relativity , 1998 .
[9] A. Ungar,et al. Gyrogroups and the decomposition of groups into twisted subgroups and subgroups , 2001 .
[10] A. B. Stewart. The Discovery of Stellar Aberration , 1964 .
[11] J. Mitchard. The Theory of Relativity , 1921, Nature.
[12] A. Einstein. Zur Elektrodynamik bewegter Körper , 1905 .
[13] Abraham Albert Ungar. From Möbius to Gyrogroups , 2008, Am. Math. Mon..
[14] A. Einstein. On the Electrodynamics of Moving Bodies , 2005 .
[15] R. Brehme. The Advantage of Teaching Relativity with Four-Vectors , 1968 .
[16] A. Ungar,et al. Analytic Hyperbolic Geometry: Mathematical Foundations And Applications , 2005 .
[17] John Stillwell,et al. Sources of Hyperbolic Geometry , 1996 .
[18] D. DeBra,et al. Gravity Probe B( , 2009 .
[19] E. M. Lifshitz,et al. Course in Theoretical Physics , 2013 .
[20] Shinji Tsujikawa,et al. Dynamics of dark energy , 2006 .
[21] A. Ungar. Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity , 2008 .
[22] Arthur I. Miller. Albert Einstein's Special Theory of Relativity , 1980 .
[23] N. Kemmer,et al. The Theory of Space, Time and Gravitation , 1964 .
[24] John Stachel,et al. Einstein's Miraculous Year: Five Papers That Changed the Face of Physics , 1998 .
[25] Tomás Feder. Strong near subgroups and left gyrogroups , 2003 .
[26] From Euclid to Eddington , 1950 .
[27] A. Ungar,et al. Thomas rotation and the parametrization of the Lorentz transformation group , 1988 .
[28] V. Varićak. Darstellung der relativitätstheorie im dreidimensionalen lobatschefskijschen raume , 1924 .
[29] W. Rindler,et al. Relativity: Special, General, and Cosmological , 2001 .
[30] M. Kikkawa. Geometry of homogeneous Lie loops , 1975 .
[31] A. Ungar. Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces , 2001 .
[32] Albert Einstein,et al. The Principle of Relativity , 2014 .
[33] Edmund Taylor Whittaker,et al. From Euclid to Eddington: A Study of Conceptions of the External World , 1981 .
[34] J. Mccleary,et al. Geometry from a Differentiable Viewpoint: Recapitulation and coda , 1994 .
[35] A. Ungar. Thomas precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics , 1997 .
[36] Gyrogroups and homogeneous loops , 1999 .
[37] L. H. Thomas. The Motion of the Spinning Electron , 1926, Nature.
[38] USING RELATIVE VELOCITIES AND HYPERBOLIC GEOMETRY IN SPECIAL RELATIVITY , 2007 .
[39] J. Vermeer. A geometric interpretation of Ungar's addition and of gyration in the hyperbolic plane , 2005 .
[40] Thomas precession and its associated grouplike structure , 1991 .
[41] L. Okun,et al. The Concept of Mass , 1989 .
[42] A. Ungar,et al. Involutory decomposition of groups into twisted subgroups and subgroups , 2000 .
[43] 吉川 通彦. Geometry of Homogeneous Left Lie Loops and Tangent Lie Triple Algebras , 1999 .