11 Encoding second order string ACG with deterministic tree walking transducers

In this paper we study the class of string languages represen ted by second order Abstract Categorial Grammar. We prove that this class is the sa me as the class of output languages of determistic tree walking automata. Together w ith the result of de Groote and Pogodalla (2004) this shows that the higher-order opera tions involved in the definition of second order ACGs can always be represented by oper ations that are at most fourth order.

[1]  David J. Weir,et al.  Characterizing mildly context-sensitive grammar formalisms , 1988 .

[2]  Ryo Yoshinaka,et al.  The Complexity and Generative Capacity of Lexicalized Abstract Categorial Grammars , 2005, LACL.

[3]  R. Montague Formal philosophy; selected papers of Richard Montague , 1974 .

[4]  Philippe de Groote,et al.  Towards Abstract Categorial Grammars , 2001, ACL.

[5]  Alfred V. Aho,et al.  Translations on a context free grammar , 1969, STOC.

[6]  Sylvain Pogodalla,et al.  On the Expressive Power of Abstract Categorial Grammars: Representing Context-Free Formalisms , 2004, J. Log. Lang. Inf..

[7]  David J. Weir Linear Context-Free Rewriting Systems and Deterministic Tree-Walking Transducers , 1992, ACL.

[8]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[9]  Sylvain Salvati,et al.  Problèmes de filtrage et problème d'analyse pour les grammaires catégorielles abstraites. (Matching problem and parsing problem for abstract categorial grammars) , 2005 .

[10]  Gérard P. Huet,et al.  The Zipper , 1997, Journal of Functional Programming.

[11]  R. Oehrle,et al.  -Linear Context-Free Rewriting Systems as Abstract Categorial Grammars , 2003 .

[12]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[13]  Mariangiola Dezani-Ciancaglini,et al.  Lambda-terms as total or partial functions on normal forms , 1975, Lambda-Calculus and Computer Science Theory.

[14]  Alfred V. Aho,et al.  Translations on a Context-Free Grammar , 1971, Inf. Control..