Optimization of Process Parameters Using Soft Computing Techniques: A Case With Wire Electrical Discharge Machining

Machining of hard metals and alloys using Conventional machining involves increased demand of time, energy and cost. It causes tool wear resulting in loss of quality of the product. Non-conventional machining, on the other hand produces product with minimum time and at desired level of accuracy. In the present study, EN19 steel was machined using CNC Wire Electrical discharge machining with pre-defined process parameters. Material Removal Rate and Surface roughness were considered as responses for this study. The present optimization problem is single and as well as multi-response. Considering the complexities of this present problem, experimental data were generated and the results were analyzed by using Taguchi, Grey Relational Analysis and Weighted Principal Component Analysis under soft computing approach. Responses variances with the variation of process parameters were thoroughly studied and analyzed; also ‘best optimal values’ were identified. The result shows an improvement in responses from mean to optimal values of process parameters. Optimization of Process Parameters Using Soft Computing Techniques: A Case With Wire Electrical Discharge Machining

[1]  J. S. Khamba,et al.  Effect of cryogenic treated brass wire electrode on material removal rate in wire electrical discharge machining , 2012 .

[2]  M. M. M. Sarcar,et al.  Evaluation of optimal parameters for machining brass with wire cut EDM , 2009 .

[3]  N. Mohri,et al.  Some Considerations to Machining Characteristics of Insulating Ceramics-Towards Practical Use in Industry- , 2002 .

[4]  Rajesh Khanna,et al.  Modeling and multiresponse optimization on WEDM for HSLA by RSM , 2012, The International Journal of Advanced Manufacturing Technology.

[5]  Dingwen Yu,et al.  Influence of machining parameters on surface roughness in finish cut of WEDM , 2007 .

[6]  Can Cogun,et al.  An investigation on wire wear in WEDM , 2003 .

[7]  Jun Qu,et al.  Investigation of the spark cycle on material removal rate in wire electrical discharge machining of advanced materials , 2004 .

[8]  B. Bhattacharyya,et al.  Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy , 2005 .

[9]  Ming-Guo Her,et al.  Study of the Batch Production of Micro Parts Using the EDM Process , 2002 .

[10]  Rajesh Khanna,et al.  Performance analysis for D-3 material using response surface methodology on WEDM , 2013 .

[11]  Ravindranadh Bobbili,et al.  Multi response optimization of wire-EDM process parameters of ballistic grade aluminium alloy , 2015 .

[12]  Jatinder Kumar,et al.  Prediction of Surface Roughness in Wire Electric Discharge Machining (WEDM) Process based on Response Surface Methodology , 2012 .

[13]  M. Durairaj,et al.  Analysis of Process Parameters in Wire EDM with Stainless Steel Using Single Objective Taguchi Method and Multi Objective Grey Relational Grade , 2013 .

[14]  Surjya K. Pal,et al.  Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite , 2008 .

[15]  Siba Sankar Mahapatra,et al.  Optimization of WEDM process parameters using deep cryo-treated Inconel 718 as work material , 2016 .

[16]  R. Ramakrishnan,et al.  Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process , 2008 .

[17]  Arshad Noor Siddiquee,et al.  Investigations on the effect of wire EDM process parameters on surface integrity of HSLA: a multi-performance characteristics optimization , 2014 .

[18]  Trevor A Spedding,et al.  Study on modeling of wire EDM process , 1997 .

[19]  Alakesh Manna,et al.  Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC , 2006 .

[20]  Shankar Chakraborty,et al.  Multi-response optimisation of WEDM process using principal component analysis , 2009 .

[21]  J. Deng,et al.  Introduction to Grey system theory , 1989 .

[22]  M. S. Shunmugam,et al.  Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm , 2005 .

[23]  T. C. Lee,et al.  Processing of advanced ceramics using the wire-cut EDM process , 1997 .

[24]  C. Su,et al.  Multi-response robust design by principal component analysis , 1997 .

[25]  T. R. Bement,et al.  Taguchi techniques for quality engineering , 1995 .

[26]  Yunn-Shiuan Liao,et al.  Determination of finish-cutting operation number and machining-parameters setting in wire electrical discharge machining , 1999 .

[27]  Liang Li,et al.  Research on WEDM Process Optimization for PCD Micro Milling Tool , 2013 .

[28]  Kamlakar P Rajurkar,et al.  Material Removal in WEDM of PCD Blanks , 1993 .

[29]  Gian Bhushan,et al.  Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II , 2012 .

[30]  Amar Patnaik,et al.  Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method , 2007 .

[31]  Hari Singh,et al.  Effects of process parameters on material removal rate in WEDM , 2009 .

[32]  Trevor A Spedding,et al.  Parametric optimization and surface characterization of wire electrical discharge machining process , 1997 .

[33]  Bulan Abdullah,et al.  Influence of machine feed rate in WEDM of Titanium Ti-6Al-4V with constant current (6A) using brass wire , 2012 .

[34]  Kuo-Wei Lin,et al.  Optimizing Multiple Quality Characteristics of Wire Electrical Discharge Machining via Taguchi method-based Gray analysis for Magnesium Alloy , 2010 .

[35]  Jatinder Kumar,et al.  Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process , 2013, The International Journal of Advanced Manufacturing Technology.

[36]  Saurav Datta,et al.  Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of submerged arc weld: a case study , 2009 .

[37]  Ming-Shyan Huang,et al.  Simulation of a regression-model and PCA based searching method developed for setting the robust injection molding parameters of multi-quality characteristics , 2008 .

[38]  N. Mohri,et al.  Probability of precision micro-machining of insulating Si3N4 ceramics by EDM , 2003 .

[39]  Hung-Chang Liao,et al.  Multi-response optimization using weighted principal component , 2006 .

[40]  Neeraj Sharma,et al.  Multi Quality Characteristics Of WEDM Process Parameters with RSM , 2013 .

[41]  Saurav Datta,et al.  Modeling, simulation and parametric optimization of wire EDM process using response surface methodology coupled with grey-Taguchi technique , 2010 .

[42]  Mohammad Sadeghi,et al.  Optimization of cutting conditions in WEDM process using regression modelling and Tabu-search algorithm , 2011 .

[43]  R. Ramakrishnan,et al.  Multi response optimization of wire EDM operations using robust design of experiments , 2006 .

[44]  Siba Sankar Mahapatra,et al.  Optimization of wire electrical discharge machining (WEDM) process parameters using genetic algorithm , 2006 .

[45]  Han Huang,et al.  Microgrinding of deep micro grooves with high table reversal speed , 2004 .

[46]  Yunn-Shiuan Liao,et al.  Optimization of machining parameters of Wire-EDM based on Grey relational and statistical analyses , 2003 .

[47]  K. Kanlayasiri,et al.  Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model , 2007 .

[48]  Y. S. Tarng,et al.  Determination of optimal cutting parameters in wire electrical discharge machining , 1995 .

[49]  Ugur Esme,et al.  PREDICTION OF SURFACE ROUGHNESS IN WIRE ELECTRICAL DISCHARGE MACHINING USING DESIGN OF EXPERIMENTS AND NEURAL NETWORKS , 2009 .

[50]  K. Chiang,et al.  Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis , 2006 .

[51]  Abolfazl Golshan,et al.  Optimizing Rough Cut in WEDMing Titanium Alloy (Ti6Al4V) by Brass Wire Using the Taguchi Method , 2012 .

[52]  Neeraj Sharma,et al.  Modelling the WEDM Process Parameters for Cryogenic Treated D-2 Tool Steel by Integrated RSM and GA , 2014 .

[53]  N. Özdemir,et al.  An investigation on machinability of nodular cast iron by WEDM , 2006 .

[54]  Yunn-Shiuan Liao,et al.  A study to achieve a fine surface finish in Wire-EDM , 2004 .

[55]  M. S. Shunmugam,et al.  Characteristics of wire-electro discharge machined Ti6Al4V surface , 2004 .

[56]  Nihat Tosun,et al.  A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method , 2004 .

[57]  Sandeep Grover,et al.  Simultaneous optimization of material removal rate and surface roughness for WEDM of WC-Co composite using grey relational analysis along with Taguchi method , 2011 .

[58]  T. A. El-Taweel,et al.  Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM , 2005 .

[59]  Shankar Chakraborty,et al.  Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms , 2012, Appl. Soft Comput..

[60]  Jiju Antony,et al.  Multi‐response optimization in industrial experiments using Taguchi's quality loss function and principal component analysis , 2000 .