Photoluminescence from GeSn nano-heterostructures

We investigate the distribution of Sn in GeSn nano-heteroepitaxial clusters deposited at temperatures well exceeding the eutectic temperature of the GeSn system. The 600 °C molecular beam epitaxy on Si-patterned substrates results in the selective growth of GeSn nano-clusters having a 1.4 ± 0.5 at% Sn content. These nano-clusters feature Sn droplets on their faceted surfaces. The subsequent deposition of a thin Ge cap layer induced the incorporation of the Sn atoms segregated on the surface in a thin layer wetting the nano-dots surface with 8 ± 0.5 at% Sn. The presence of this wetting layer is associated with a relatively strong photoluminescence emission that we attribute to the direct recombination occurring in the GeSn nano-dots outer region.

[1]  G. Capellini,et al.  The impact of donors on recombination mechanisms in heavily doped Ge/Si layers , 2017 .

[2]  D. Gerthsen,et al.  Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge1−xSnx epilayers , 2017, Scientific Reports.

[3]  G. Capellini,et al.  Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE , 2017, Nanotechnology.

[4]  G. Capellini,et al.  Photoluminescence from ultrathin Ge-rich multiple quantum wells observed up to room temperature: Experiments and modeling , 2016 .

[5]  G. Capellini,et al.  Selective growth of fully relaxed GeSn nano-islands by nanoheteroepitaxy on patterned Si(001) , 2016 .

[6]  G. Capellini,et al.  Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure. , 2016, ACS applied materials & interfaces.

[7]  G. Capellini,et al.  Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers , 2016, Scientific Reports.

[8]  G. Capellini,et al.  Photodetection in Hybrid Single-Layer Graphene/Fully Coherent Germanium Island Nanostructures Selectively Grown on Silicon Nanotip Patterns. , 2016, ACS applied materials & interfaces.

[9]  N. Taoka,et al.  Growth and applications of GeSn-related group-IV semiconductor materials , 2015, 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[10]  N. Taoka,et al.  Growth and applications of GeSn-related group-IV semiconductor materials , 2015 .

[11]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[12]  T. Leontiou,et al.  Shaping the composition profiles in heteroepitaxial quantum dots: Interplay of thermodynamic and kinetic effects , 2014 .

[13]  G. Capellini,et al.  Fully coherent growth of Ge on free-standing Si(001) nanomesas , 2014 .

[14]  K. Saraswat,et al.  Theoretical Analysis of GeSn Alloys as a Gain Medium for a Si-Compatible Laser , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Liying Jiang,et al.  Direct versus indirect optical recombination in Ge films grown on Si substrates , 2011, 1106.3300.

[16]  F. Bechstedt,et al.  Shape of free and constrained group-IV crystallites: Influence of surface energies , 2005 .

[17]  S. Hersee,et al.  Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials , 1999 .

[18]  Weber,et al.  Sn submonolayer-mediated Ge heteroepitaxy on Si(001). , 1995, Physical review. B, Condensed matter.

[19]  Ephraim Suhir,et al.  New approach to the high quality epitaxial growth of lattice‐mismatched materials , 1986 .

[20]  G. Abbaschian,et al.  The Ge−Sn (Germanium−Tin) system , 1984 .