Automated detection of new impact sites on Martian surface from HiRISE images

Abstract In this study, an automated method for Martian new impact site detection from single images is presented. It first extracts dark areas in full high resolution image, then detects new impact craters within dark areas using a cascade classifier which combines local binary pattern features and Haar-like features trained by an AdaBoost machine learning algorithm. Experimental results using 100 HiRISE images show that the overall detection rate of proposed method is 84.5%, with a true positive rate of 86.9%. The detection rate and true positive rate in the flat regions are 93.0% and 91.5%, respectively.

[1]  Virgil L. Sharpton,et al.  Geomorphic analysis of small rayed craters on Mars: Examining primary versus secondary impacts , 2009 .

[2]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[3]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Pedro Pina,et al.  MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets , 2011 .

[5]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[6]  Nicolas Thomas,et al.  Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters , 2009, Science.

[7]  Alfred S. McEwen,et al.  The current martian cratering rate , 2010 .

[8]  Kaichang Di,et al.  Mars Surface Change Detection from Multi-temporal Orbital Images , 2014 .

[9]  Shane Byrne,et al.  HiRISE observations of new impact craters exposing Martian ground ice , 2014 .

[10]  Alfred S. McEwen,et al.  Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters , 2010 .

[11]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[12]  Kiri Wagstaff,et al.  Dynamic Landmarking for Surface Feature Identification and Change Detection , 2012, TIST.

[13]  Shuanggen Jin,et al.  Automatic detection of impact craters on Mars using a modified adaboosting method , 2014 .

[14]  Oded Aharonson,et al.  The production of small primary craters on Mars and the Moon , 2010, 1309.2849.

[15]  Pedro Pina,et al.  Impact Crater Recognition on Mars Based on a Probability Volume Created by Template Matching , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[17]  Alfred S. McEwen,et al.  New Dated Impacts on Mars and an Updated Current Cratering Rate , 2014 .

[18]  J. Muller,et al.  Automated crater detection, a new tool for Mars cartography and chronology , 2005 .

[19]  S. Smrekar,et al.  An overview of the Mars Reconnaissance Orbiter (MRO) science mission , 2007 .

[20]  Wei Li,et al.  A machine learning approach to crater detection from topographic data , 2014 .

[21]  Christian Wöhler,et al.  Hybrid method for crater detection based on topography reconstruction from optical images and the new LU78287GT catalogue of Lunar impact craters , 2014 .

[22]  Tomasz F. Stepinski,et al.  Automatic detection of sub-km craters in high resolution planetary images , 2009 .

[23]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[24]  Bruce A. Cantor,et al.  An overview of the 1985-2006 Mars Orbiter Camera science investigation , 2010 .

[25]  Shuichi Rokugawa,et al.  Automated detection and classification of lunar craters using multiple approaches , 2006 .

[26]  Alfred S. McEwen,et al.  Changes in blast zone albedo patterns around new martian impact craters , 2016 .

[27]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[28]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[29]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[30]  Wei Ding,et al.  Detection of Sub-Kilometer Craters in High Resolution Planetary Images Using Shape and Texture Features , 2012 .

[31]  ZongYu Yue,et al.  Automated detection of lunar craters based on object-oriented approach , 2008 .

[32]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[33]  Pedro Pina,et al.  Crater Detection by a Boosting Approach , 2009, IEEE Geoscience and Remote Sensing Letters.