A P ] 2 8 A pr 2 00 6 Tug-of-war and the infinity Laplacian
暂无分享,去创建一个
David B. Wilson | Yuval Peres | Oded Schramm | Scott Sheffield | Y. Peres | O. Schramm | D. Wilson | S. Sheffield
[1] Yuval Peres,et al. Random-Turn Hex and Other Selection Games , 2005, Am. Math. Mon..
[2] Editors , 1986, Brain Research Bulletin.
[3] Adam M. Oberman. A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions , 2004, Math. Comput..
[4] G. Aronsson. Extension of functions satisfying lipschitz conditions , 1967 .
[5] G. Aronsson. Construction of singular solutions to the p-harmonic equation and its limit equation for p=∞ , 1986 .
[6] Donald A. Martin,et al. The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.
[7] L. Evans,et al. Optimal Lipschitz extensions and the infinity laplacian , 2001 .
[8] V. A. Mil'man. Absolutely minimal extensions of functions on metric spaces , 1999 .
[9] R. Jensen. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .
[10] Champion,et al. Principles of comparison with distance functions for absolute minimizers , 2007 .
[11] G. Barles,et al. EXISTENCE AND COMPARISON RESULTS FOR FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS WITHOUT ZEROTH-ORDER TERM* , 2001 .
[12] Petri Juutinen,et al. ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS ON A METRIC SPACE , 2002 .
[13] J. Propp,et al. Combinatorial Games under Auction Play , 1999 .
[14] M. Crandall,et al. A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .
[15] Sylvain Sorin,et al. Stochastic Games and Applications , 2003 .
[16] L. Evans,et al. Various Properties of Solutions of the Infinity-Laplacian Equation , 2005 .
[17] Yifeng Yu. A remark on infinity-harmonic functions. , 2006 .
[18] Y. Peres,et al. Tug-of-war and the infinity Laplacian , 2006, math/0605002.
[19] J. Propp,et al. Richman games , 1995, math/9502222.
[20] E. J. McShane,et al. Extension of range of functions , 1934 .
[21] H. Whitney. Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .