Extraordinarily transparent compact metallic metamaterials

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  C. Schlötterer,et al.  Bioinformatics Applications Note Genetics and Population Analysis Popoolation2: Identifying Differentiation between Populations Using Sequencing of Pooled Dna Samples (pool-seq) , 2022 .

[3]  Ju Young Kim,et al.  Metal Nanoparticle Array as a Tunable Refractive Index Material over Broad Visible and Infrared Wavelengths , 2018 .

[4]  J. Naciri,et al.  Tunable Subnanometer Gap Plasmonic Metasurfaces , 2017, 1711.02067.

[5]  Vadim A. Markel Maxwell Garnett approximation (advanced topics): tutorial. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Jonghwa Shin,et al.  Optical effective media with independent control of permittivity and permeability based on conductive particles , 2016 .

[7]  Vadim A. Markel Introduction to the Maxwell Garnett approximation: tutorial. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  R. Álvarez-Puebla,et al.  Fabrication and optical enhancing properties of discrete supercrystals. , 2016, Nanoscale.

[9]  M. Kling,et al.  Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays , 2016 .

[10]  C. Mirkin,et al.  Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures , 2016 .

[11]  Seungwoo Lee Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies. , 2015, Optics express.

[12]  M. Nieto-Vesperinas,et al.  Photonic band structure and effective medium properties of doubly-resonant core-shell metallo-dielectric nanowire arrays: low-loss, isotropic optical negative-index behavior , 2015, 1506.03979.

[13]  J. Sáenz,et al.  Localized magnetic plasmons in all-dielectric μ<0 metastructures , 2014, 1411.6548.

[14]  Daniel Torrent,et al.  Gradient index lenses for flexural waves based on thickness variations , 2014 .

[15]  George C Schatz,et al.  Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials , 2014, Nature Communications.

[16]  Xing-Xiang Liu,et al.  Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach , 2013, 1303.5807.

[17]  A. Alú,et al.  Causality relations in the homogenization of metamaterials , 2011 .

[18]  A. Alú First-principles homogenization theory for periodic metamaterials , 2010, 1012.1351.

[19]  G. Vecchi,et al.  Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings , 2008 .

[20]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[21]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[22]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[23]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[24]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[25]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[26]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[27]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[28]  W. E. Kock,et al.  Metallic delay lenses , 1948, Bell Syst. Tech. J..

[29]  J. Swinburne Electromagnetic Theory , 1894, Nature.