A versatile ray-tracing code for studying rf wave propagation in toroidal magnetized plasmas

A new ray-tracing code named C3PO has been developed to study the propagation of arbitrary electromagnetic radio-frequency (rf) waves in magnetized toroidal plasmas. Its structure is designed for maximum flexibility regarding the choice of coordinate system and dielectric model. The versatility of this code makes it particularly suitable for integrated modeling systems. Using a coordinate system that reflects the nested structure of magnetic flux surfaces in tokamaks, fast and accurate calculations inside the plasma separatrix can be performed using analytical derivatives of a spline-Fourier interpolation of the axisymmetric toroidal MHD equilibrium. Applications to reverse field pinch magnetic configuration are also included. The effects of 3D perturbations of the axisymmetric toroidal MHD equilibrium, due to the discreteness of the magnetic coil system or plasma fluctuations in an original quasi-optical approach, are also studied. Using a Runge–Kutta–Fehlberg method for solving the set of ordinary differential equations, the ray-tracing code is extensively benchmarked against analytical models and other codes for lower hybrid and electron cyclotron waves.

[1]  V. Shafranov Plasma Equilibrium in a Magnetic Field , 1966 .

[2]  Marco Brambilla,et al.  Kinetic Theory of Plasma Waves: Homogeneous Plasmas , 1998 .

[3]  João P. S. Bizarro,et al.  On the dynamics of the launched power spectrum during lower hybrid current drive in tokamaks , 1993 .

[4]  Yves Peysson,et al.  RF current drive and plasma fluctuations , 2011 .

[5]  P. T. Bonoli,et al.  Simulation model for lower hybrid current drive , 1986 .

[6]  T. J. Stuchi,et al.  Symplectic integrators revisited , 2002 .

[7]  P. T. Bonoli,et al.  The lower hybrid wave cutoff: A case study in eikonal methods , 2010, 1004.4943.

[8]  T. Tala,et al.  Role of fast waves in the central deposition of lower hybrid power , 1999 .

[9]  Edward Ott,et al.  Toroidal and scattering effects on lower‐hybrid wave propagation , 1982 .

[10]  J. Bizarro The geometrical-optics law of reflection for electromagnetic waves in magnetically confined plasmas: Specular reflection of rays at the last closed flux surface , 2010 .

[11]  Kjell Rönnmark Kinetic theory of plasma waves , 1985 .

[12]  J. Decker,et al.  On Self-consistent Simulation of the Lower Hybrid Current Drive , 2006 .

[13]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[14]  R. N. Dexter,et al.  First results from the Madison Symmetric Torus reversed field pinch , 1990 .

[15]  K. Matsuda,et al.  Ray tracing study of the electron cyclotron current drive in DIII-D using 60 GHz , 1989 .

[16]  F. Felici,et al.  Multiple electron cyclotron power deposition location tracking by break-in-slope analysis in TCV plasmas , 2011 .

[17]  Per Strand,et al.  The way towards thermonuclear fusion simulators , 2007, Comput. Phys. Commun..

[18]  Julien Hillairet,et al.  Calculations of lower hybrid current drive in ITER , 2011 .

[19]  M. Brambilla,et al.  Eikonal Description of HF Waves in Toroidal Plasmas , 1982 .

[20]  C. Castaldo,et al.  Analysis of the validity of the asymptotic techniques in the lower hybrid wave equation solution for reactor applications , 2007 .

[21]  Lawrence F. Shampine,et al.  An efficient Runge-Kutta (4,5) pair , 1996 .

[22]  L. Lao,et al.  MHD Equilibrium Reconstruction in the DIII-D Tokamak , 2005 .

[23]  Kaufman,et al.  Weyl representation for electromagnetic waves: The wave kinetic equation. , 1985, Physical review. A, General physics.

[24]  E. Joffrin,et al.  The CRONOS suite of codes for integrated tokamak modelling , 2010 .

[25]  D. Moreau,et al.  On self‐consistent ray‐tracing and Fokker–Planck modeling of the hard x‐ray emission during lower‐hybrid current drive in tokamaks , 1993 .

[26]  C. Sovinec,et al.  Lower‐hybrid poloidal current drive for fluctuation reduction in a reversed field pinch , 1994 .

[27]  F. Imbeaux,et al.  Ray-tracing and Fokker–Planck modelling of the effect of plasma current on the propagation and absorption of lower hybrid waves , 2005 .

[28]  A. Ram,et al.  Fokker-Planck description of the scattering of radio frequency waves at the plasma edge , 2010 .

[29]  Y. Peysson,et al.  Calculation of rf current drive in tokamaks , 2008 .

[30]  William H. Press,et al.  Numerical recipes in C , 2002 .

[31]  A. Ram,et al.  Relativistic description of electron Bernstein waves , 2006 .

[32]  Mcdonald Wave kinetic equation in a fluctuating medium. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[33]  E. Ott Lower hybrid wave scattering by density fluctuations , 1979 .

[34]  D. Moreau,et al.  Magnetic ripple and the modeling of lower-hybrid current drive in tokamaks , 1996 .

[35]  J. B. Taylor,et al.  Relaxation of toroidal plasma and generation of reverse magnetic fields , 1974 .

[36]  R. W. Harvey,et al.  Benchmarking of codes for electron cyclotron heating and electron cyclotron current drive under ITER conditions , 2008 .

[37]  Loukas Vlahos,et al.  Electron-cyclotron wave scattering by edge density fluctuations in ITER , 2009 .

[38]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[39]  D. Uhrlandt,et al.  Transport mechanisms of metastable and resonance atoms in a gas discharge plasma , 2013 .

[40]  F. Perkins,et al.  Scattering of lower‐hybrid waves by drift‐wave density fluctuations: Solutions of the radiative transfer equation , 1983 .

[41]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.

[42]  G. Vahala,et al.  Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks , 1992 .

[43]  Paul Bonoli,et al.  Linear Theory of Lower Hybrid Heating , 1984, IEEE Transactions on Plasma Science.

[44]  X. Litaudon,et al.  Statistical theory of wave propagation and multipass absorption for current drive in tokamaks , 1993 .