A reduced order approach for probabilistic inversions of 3-D magnetotelluric data I: general formulation

Simulation-based probabilistic inversions of 3D magnetotelluric (MT) data are arguably the best option to deal with the non-linearity and non-uniqueness of the MT problem. However, the computational cost associated with the modeling of 3D MT data has so far precluded the community from adopting and/or pursuing full probabilistic inversions of large MT datasets. In this contribution, we present a novel and general inversion framework, driven by Markov chain Monte Carlo (MCMC) algorithms, which combines i) an efficient parallel-in-parallel structure to solve the 3D forward problem, ii) a reduced order technique to create fast and accurate surrogate models of the forward problem, and iii) adaptive strategies for both the MCMC algorithm and the surrogate model. In particular, and contrary to traditional implementations, the adaptation of the surrogate is integrated into the MCMC inversion. This circumvents the need of costly offline stages to build the surrogate and further increases the overall efficiency of the method. We demonstrate the feasibility and performance of our approach to invert for large-scale conductivity structures with two numerical examples using different parameterizations and dimensionalities. In both cases, we report staggering gains in computational efficiency compared to traditional MCMC implementations. Our method finally removes the main bottleneck of probabilistic inversions of 3D MT data and opens up new opportunities for both stand-alone MT inversions and multi-observable joint inversions for the physical state of the Earth’s interior.

[1]  Wenping Jiang,et al.  Trans-Dimensional Monte Carlo Inversion of Short Period Magnetotelluric Data for Cover Thickness Estimation , 2018, ASEG Extended Abstracts.

[2]  S. Karato,et al.  Water distribution across the mantle transition zone and its implications for global material circulation , 2011 .

[3]  Amir Khan On Earth’s Mantle Constitution and Structure from Joint Analysis of Geophysical and Laboratory-Based Data: An Example , 2016, Surveys in Geophysics.

[4]  Gary D. Egbert,et al.  Three-dimensional electrical resistivity of the north-central USA from EarthScope long period magnetotelluric data , 2015 .

[5]  J. Afonso,et al.  Geochemical and geophysical constrains on the dynamic topography of the Southern African Plateau , 2017 .

[6]  Graham Heinson,et al.  Probabilistic Magnetotelluric Inversion with Adaptive Regularisation Using the No-U-Turns Sampler , 2018, Pure and Applied Geophysics.

[7]  Adam Schultz,et al.  Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data , 2014 .

[8]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[9]  Gianluigi Rozza,et al.  Model Reduction of Parametrized Systems , 2017 .

[10]  Weerachai Siripunvaraporn,et al.  Three-Dimensional Magnetotelluric Inversion: An Introductory Guide for Developers and Users , 2011, Surveys in Geophysics.

[11]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[12]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[13]  S. Thiel,et al.  AusLAMP 3D MT imaging of an intracontinental deformation zone, Musgrave Province, Central Australia , 2020, Earth, Planets and Space.

[14]  Yoshimori Honkura,et al.  Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan Back Arc , 2001 .

[15]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[16]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[17]  A. Jones,et al.  Integrated geophysical‐petrological modeling of lithosphere‐asthenosphere boundary in central Tibet using electromagnetic and seismic data , 2014 .

[18]  Mioara Mandea,et al.  CHAOS—a model of the Earth's magnetic field derived from CHAMP, Ørsted, and SAC‐C magnetic satellite data , 2006 .

[19]  Michael S. Zhdanov,et al.  Electromagnetic inversion using quasi-linear approximation , 2000 .

[20]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[21]  Alan G. Jones,et al.  Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: Application to the Kaapvaal Craton and Rehoboth Terrane, southern Africa , 2011 .

[22]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[23]  Myung Jin Nam,et al.  Efficient three-dimensional inversion of magnetotelluric data using approximate sensitivities , 2008 .

[24]  Dongwoo Sheen,et al.  A NONCONFORMING MIXED FINITE ELEMENT METHOD FOR MAXWELL'S EQUATIONS , 2000 .

[25]  C. Peach,et al.  Melt distribution in olivine rocks based on electrical conductivity measurements , 2005 .

[26]  T. Yoshino,et al.  Laboratory Electrical Conductivity Measurement of Mantle Minerals , 2010 .

[27]  Robert J. Renka,et al.  Multivariate interpolation of large sets of scattered data , 1988, TOMS.

[28]  Peter Dietrich,et al.  An approach to determine equivalent solutions to the geoelectrical 2D inversion problem , 2004 .

[29]  G. Keller,et al.  The Geoelectrical Methods in Geophysical Exploration , 1994 .

[30]  Ralf Hartmann,et al.  Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..

[31]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[32]  Alan G. Jones,et al.  Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data , 2010 .

[33]  Dmitry B. Avdeev,et al.  Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .

[34]  Alexey Kuvshinov,et al.  Global 3-D imaging of mantle electrical conductivity based on inversion of observatory C-responses - I. An approach and its verification , 2012 .

[35]  Alexei Kuvshinov,et al.  3-D Global Induction in the Oceans and Solid Earth: Recent Progress in Modeling Magnetic and Electric Fields from Sources of Magnetospheric, Ionospheric and Oceanic Origin , 2008 .

[36]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[37]  A. Pommier Interpretation of Magnetotelluric Results Using Laboratory Measurements , 2013, Surveys in Geophysics.

[38]  M. Sambridge,et al.  Seismic tomography with the reversible jump algorithm , 2009 .

[39]  M. Moorkamp,et al.  Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: Are seismic velocities and electrical conductivities compatible? , 2007 .

[40]  Julen Alvarez Aramberri hp-Adaptive Simulation and Inversion of Magnetotelluric Measurements , 2015 .

[41]  Juan E. Santos,et al.  Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling , 2000 .

[42]  Adam Schultz,et al.  Global electromagnetic induction constraints on transition-zone water content variations , 2009, Nature.

[43]  J. A. Vrugt,et al.  Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.

[44]  Stephen K. Park,et al.  Constraints from magnetotelluric measurements on magmatic processes and upper mantle structure in the vicinity of Lassen volcanic center, northern California , 2013 .

[45]  Martin W. Hess,et al.  Fast Evaluation of Time–Harmonic Maxwell's Equations Using the Reduced Basis Method , 2013, IEEE Transactions on Microwave Theory and Techniques.

[46]  David Pardo,et al.  Dimensionally adaptive hp-finite element simulation and inversion of 2D magnetotelluric measurements , 2017, J. Comput. Sci..

[47]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[48]  D. Forsyth,et al.  Geophysical evidence from the MELT area for compositional controls on oceanic plates , 2005, Nature.

[49]  Kerry Key,et al.  MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data , 2016 .

[50]  J. Roberts,et al.  Partial‐melt electrical conductivity: Influence of melt composition , 1999 .

[51]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[52]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[53]  Juan Carlos Afonso,et al.  Fast Stokes Flow Simulations for Geophysical‐Geodynamic  Inverse Problems and Sensitivity Analyses Based On Reduced Order Modeling , 2020, Journal of Geophysical Research: Solid Earth.

[54]  Gary D. Egbert,et al.  WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation , 2009 .

[55]  James R. Wait,et al.  Theory of magnetotelluric fields , 1962 .

[56]  Liang Yan,et al.  Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems , 2018, J. Comput. Phys..

[57]  T. Harinarayana Combination of EM and DC Measurements For Upper Crustal Studies , 1999 .

[58]  Dongwoo Sheen,et al.  Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems , 1999 .

[59]  Dmitry B. Avdeev,et al.  3D magnetotelluric inversion using a limited-memory quasi-Newton optimization , 2009 .

[60]  Eric Florentin,et al.  Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems , 2012 .

[61]  Oliver Ritter,et al.  Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California , 2013 .

[62]  Gernot Plank,et al.  The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products , 2013, Earth, Planets and Space.

[63]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[64]  David Pardo,et al.  hp-Adaptive Simulation and Inversion of Magnetotelluric Measurements , 2015 .

[65]  Yongwimon Lenbury,et al.  Three-dimensional magnetotelluric inversion : data-space method , 2005 .

[66]  Alan D. Chave,et al.  Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints , 2009 .

[67]  S. Karato,et al.  The role of hydrogen in the electrical conductivity of the upper mantle , 1990, Nature.

[68]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[69]  L. Cagniard Basic theory of the magneto-telluric method of geophysical prospecting , 1953 .

[70]  Gary D. Egbert,et al.  Computational recipes for electromagnetic inverse problems , 2012 .

[71]  Alan G. Jones,et al.  Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison , 2013 .

[72]  Nils Olsen,et al.  A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC‐C magnetic data , 2006 .

[73]  Paul T. Boggs,et al.  Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .

[74]  C. Thurber,et al.  Joint Inversion of Seismic and Magnetotelluric Data in the Parkfield Region of California Using the Normalized Cross-Gradient Constraint , 2015, Pure and Applied Geophysics.

[75]  M. Zhdanov,et al.  Large-scale three-dimensional inversion of EarthScope MT data using the integral equation method , 2010 .

[76]  David Pardo,et al.  Multigoal-oriented adaptivity for hp-finite element methods , 2010, ICCS.

[77]  Myung Jin Nam,et al.  3D magnetotelluric modelling including surface topography , 2007 .

[78]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[79]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .

[80]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[81]  Karen Willcox,et al.  Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems [Chapter 7] , 2010 .

[82]  Time-Domain Electromagnetic Sounding-Computation of Multi-Layer Response and the Problem of Equivalence in INTERPRETATION* , 1979 .

[83]  Benjamin Stamm,et al.  Certified Reduced Basis Method for the Electric Field Integral Equation , 2012, SIAM J. Sci. Comput..

[84]  Jinsong Chen,et al.  Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site , 2012 .

[85]  Qiang Zheng,et al.  Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Erro. , 2018 .

[86]  Nils Olsen,et al.  Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data , 2004 .

[87]  Douglas W. Oldenburg,et al.  An Algorithm For the Three-dimensional Inversion of Magnetotelluric Data , 2002 .

[88]  S. Taylor,et al.  Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth's mantle , 2008 .

[89]  J. O’Donnell,et al.  Upper Mantle Melt Distribution From Petrologically Constrained Magnetotellurics , 2019, Geochemistry, Geophysics, Geosystems.

[90]  Nils Olsen,et al.  3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth’s mantle , 2006 .

[91]  J. T. Smith,et al.  Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example , 1994 .

[92]  Bofeng Li,et al.  Bias-corrected regularized solution to inverse ill-posed models , 2012, Journal of Geodesy.

[93]  M. Unsworth,et al.  New constraints on the magma distribution and composition beneath Volcán Uturuncu and the southern Bolivian Altiplano from magnetotelluric data , 2016 .

[94]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[95]  R. Mackie,et al.  A three‐dimensional magnetotelluric investigation of the California Basin and Range , 1996 .

[96]  K. Selway On the Causes of Electrical Conductivity Anomalies in Tectonically Stable Lithosphere , 2013, Surveys in Geophysics.

[97]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants , 2013, Numerische Mathematik.

[98]  S. Constable,et al.  Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .

[99]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[100]  Steven L. Brunton,et al.  Data-Driven Science and Engineering , 2019 .

[101]  A. Mira On Metropolis-Hastings algorithms with delayed rejection , 2001 .

[102]  Tomoo Katsura,et al.  The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle , 2009 .

[103]  Adam Schultz,et al.  Non-linear conjugate gradient inversion for global EM induction: Resolution studies , 2008 .

[104]  Thomas Mejer Hansen,et al.  Inverse Methods: Problem Formulation and Probabilistic Solutions , 2016 .

[105]  Yongwimon Lenbury,et al.  Numerical accuracy of magnetotelluric modeling: A comparison of finite difference approximations , 2002 .

[106]  J. Afonso,et al.  3‐D multi‐observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis , 2013 .

[107]  H. Bibby,et al.  Three‐dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand , 2008 .

[108]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[109]  R. Evans The Magnetotelluric Method: Conductivity of Earth materials , 2012 .

[110]  W. Griffin,et al.  3‐D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western‐Central U.S. , 2016 .

[111]  M. Moorkamp Integrated Imaging of the Earth , 2016 .

[112]  S. Karato,et al.  Electrical Conductivity of Minerals and Rocks , 2013 .

[113]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[114]  P. Bedrosian,et al.  Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies , 2001, Science.

[115]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[116]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[117]  Jan S. Hesthaven,et al.  Certified Reduced Basis Methods and Output Bounds for the Harmonic Maxwell's Equations , 2010, SIAM J. Sci. Comput..

[118]  S. Thiel,et al.  Quality over quantity: on workflow and model space exploration of 3D inversion of MT data , 2020, Earth, Planets and Space.

[119]  Anandaroop Ray,et al.  Bayesian geophysical inversion with trans-dimensional Gaussian process machine learning , 2019, Geophysical Journal International.

[120]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[121]  Michael S. Zhdanov,et al.  3D electromagnetic inversion based on quasi-analytical approximation , 2000 .

[122]  DONGWOO SHEEN,et al.  Approximation of Electromagnetic Fields: Part I. Continuous Problems , 1997, SIAM J. Appl. Math..

[123]  K. Vozoff,et al.  Magnetotellurics: Principles and practice , 1990, Journal of Earth System Science.

[124]  S. Karato,et al.  The effect of water on the electrical conductivity of olivine , 2005, Nature.

[125]  Robert J. Renka,et al.  Algorithm 660: QSHEP2D: Quadratic Shepard Method for Bivariate Interpolation of Scattered Data , 1988, TOMS.

[126]  Alexey Kuvshinov,et al.  Global 3‐D imaging of mantle conductivity based on inversion of observatory C‐responses—II. Data analysis and results , 2012 .

[127]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[128]  S. Karato,et al.  Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere , 2009, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[129]  R. Mackie,et al.  Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .

[130]  Gary D. Egbert,et al.  ModEM: A modular system for inversion of electromagnetic geophysical data , 2014, Comput. Geosci..

[131]  J. Afonso,et al.  Imaging the Lithosphere and Upper Mantle , 2016 .

[132]  Y. Sasaki Full 3-D inversion of electromagnetic data on PC , 2001 .

[133]  Mrinal K. Sen,et al.  Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion , 1996 .

[134]  Vladimir I. Dmitriev,et al.  Models and Methods of Magnetotellurics , 2008 .

[135]  T. Yoshino,et al.  Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high‐pressure polymorphs , 2012 .

[136]  Thomas Kalscheuer,et al.  Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system , 2015 .

[137]  A. G. Yakovlev,et al.  Possibilities of magnetotelluric methods in geophysical exploration for ore minerals , 2013, Izvestiya, Physics of the Solid Earth.

[138]  W. Griffin,et al.  3‐D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables , 2013 .