Extending finite group actions on surfaces over $S^3$

Let $OE_g$ (resp. $CE_g$ and $AE_g$) and resp. $OE^o_g$ be the maximum order of finite (resp. cyclic and abelian) groups $G$ acting on the closed orientable surfaces $\Sigma_g$ which extend over $(S^3, \Sigma_g)$ among all embeddings $\Sigma_g\to S^3$ and resp. unknotted embeddings $\Sigma_g\to S^3$. It is known that $OE^o_g\le 12(g-1)$, and we show that $12(g-1)$ is reached for an unknotted embedding $\Sigma_g \to S^3$ if and only if $g = 2$, 3, 4, 5, 6, 9, 11, 17, 25, 97, 121, 241, 601. Moreover $AE_g$ is $2g+2$; and $CE_g$ is $2g+2$ for even $g$, and $2g-2$ for odd $g$. Efforts are made to see intuitively how these maximal symmetries are embedded into the symmetries of the 3-sphere.

[1]  B. Zimmermann Genus actions of finite groups on $3$-manifolds. , 1996 .

[2]  Fan Ding,et al.  Spin structures and codimension-two homeomorphism extensions , 2009, 0910.4949.

[3]  W. J. Harvey,et al.  CYCLIC GROUPS OF AUTOMORPHISMS OF A COMPACT RIEMANN SURFACE , 1966 .

[4]  B. Zimmermann Über Abbildungsklassen von Henkelkörpern , 1979 .

[5]  Shicheng Wang Maximum orders of periodic maps on closed surfaces , 1991 .

[6]  B. Zimmermann,et al.  On a class of hyperbolic 3-orbifolds of small volume and small heegaard genus associated to 2-bridge links , 2000 .

[7]  Shicheng Wang,et al.  On slope genera of knotted tori in 4-space , 2011, 1110.1921.

[8]  William D. Dunbar Nonfibering spherical 3-orbifolds , 1994 .

[9]  Large groups of symmetries of handlebodies , 1989 .

[10]  B. Zimmermann Finite group actions on handlebodies and equivariant Heegaard genus for 3-manifolds , 1992 .

[11]  R. D. Accola,et al.  On the number of automorphisms of a closed Riemann surface , 1968 .

[12]  Peter Orlik,et al.  On Seifert-manifolds , 1966 .

[13]  J. Montesinos ON TWINS IN THE FOUR-SPHERE I , 1983 .

[14]  B. Zimmermann Über Homöomorphismenn-dimensionaler Henkelkörper und endliche Erweiterungen von Schottky-Gruppen , 1981 .

[15]  B. Zimmermann,et al.  Extending finite group actions from surfaces to handlebodies , 1996 .

[16]  D. Rolfsen Knots and Links , 2003 .

[17]  P. A. Smith Transformations of Finite Period. II , 1938 .

[18]  C. Maclachlan,et al.  A Bound for the Number of Automorphisms of a Compact Riemann Surface , 1969 .

[19]  Darryl McCullough,et al.  Group Actions on Handlebodies , 1989 .

[20]  On diffeomorphisms over surfaces trivially embedded in the 4–sphere , 2002, math/0211019.