Output-only identification and dynamic analysis of time-varying mechanical structures under random excitation: A comparative assessment of parametric methods

This article addresses the problem of parametric time-domain identification and dynamic analysis for time-varying (TV) mechanical structures under unobservable random excitation. The methods presented are based on time-dependent autoregressive moving average (TARMA) models, and are classified according to the mathematical structure imposed on the TV parameter evolution as unstructured parameter evolution, stochastic parameter evolution, and deter ministic parameter evolution. The features and relative merits of each class are outlined. A representativ e method from each is then assessed through its application to the identification and dynamic analysis o f a laboratory TV structure consisting of a beam with a mass moving on it. The results are mutually compared and contrasted to those obtained through “frozen-configuration” (multiple experiment) bas eline identification.

[1]  Spilios D. Fassois,et al.  A polynomial-algebraic method for non-stationary TARMA signal analysis - Part I: The method , 1998, Signal Process..

[2]  G. Walter Wavelets and other orthogonal systems with applications , 1994 .

[3]  S. Conforto,et al.  SPECTRAL ANALYSIS FOR NON-STATIONARY SIGNALS FROM MECHANICAL MEASUREMENTS: A PARAMETRIC APPROACH , 1999 .

[4]  G. N. Fouskitakis,et al.  On the Estimation of Nonstationary Functional Series TARMA Models: An Isomorphic Matrix Algebra Based Method , 2001 .

[5]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[6]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[7]  Spilios D. Fassois,et al.  FS–TARMA Models for Non–Stationary Vibration Analysis: An overview and comparison , 2009 .

[8]  Spilios D. Fassois,et al.  Parametric time-domain methods for non-stationary random vibration modelling and analysis — A critical survey and comparison , 2006 .

[9]  G. Kitagawa,et al.  A smoothness priors time-varying AR coefficient modeling of nonstationary covariance time series , 1985, IEEE Transactions on Automatic Control.

[10]  B. Picinbono,et al.  Time and frequency representation of signals and systems , 1989 .

[11]  John S. Owen,et al.  The application of auto–regressive time series modelling for the time–frequency analysis of civil engineering structures , 2001 .

[12]  Maciej Niedzwiecki,et al.  Identification of Time-Varying Processes , 2000 .

[13]  W. Gersch,et al.  Estimation of stationary structural system parameters from non-stationary random vibration data: A locally stationary model method , 1982 .

[14]  G. N. Fouskitakis,et al.  Functional series TARMA modelling and simulation of earthquake ground motion , 2002 .

[15]  R. Ben Mrad,et al.  NON-LINEAR SYSTEMS REPRESENTATION USING ARMAX MODELS WITH TIME-DEPENDENT COEFFICIENTS , 2002 .

[16]  Grigorios Dimitriadis,et al.  IDENTIFICATION AND MODEL UPDATING OF A NON-STATIONARY VIBRATING SYSTEM , 2004 .

[17]  Viliam Makis,et al.  Adaptive state detection of gearboxes under varying load conditions based on parametric modelling , 2006 .

[18]  André Preumont,et al.  Random Vibration and Spectral Analysis , 2010 .

[19]  Spilios D. Fassois,et al.  Output-only stochastic identification of a time-varying structure via functional series TARMA models , 2009 .

[20]  G. Kitagawa Smoothness priors analysis of time series , 1996 .

[21]  S. Fassois MIMO LMS-ARMAX IDENTIFICATION OF VIBRATING STRUCTURES—PART I: THE METHOD , 2001 .

[22]  N. Draper,et al.  Applied Regression Analysis , 1967 .

[23]  O. Bardou,et al.  Early detection of leakages in the exhaust and discharge systems of reciprocating machines by vibration analysis , 1994 .

[24]  G. Kitagawa,et al.  A time varying AR coefficient model for modelling and simulating earthquake ground motion , 1985 .

[25]  Yves Grenier,et al.  Time-dependent ARMA modeling of nonstationary signals , 1983 .

[26]  J. E. Cooper,et al.  Identification of time varying modal parameters , 1990, The Aeronautical Journal (1968).

[27]  R. Ghanem,et al.  A WAVELET-BASED APPROACH FOR THE IDENTIFICATION OF LINEAR TIME-VARYING DYNAMICAL SYSTEMS , 2000 .

[28]  S. Fassois,et al.  NON-STATIONARY FUNCTIONAL SERIES TARMA VIBRATION MODELLING AND ANALYSIS IN A PLANAR MANIPULATOR , 2000 .

[29]  Kefu Liu,et al.  Identification of pseudo-natural frequencies of an axially moving cantilever beam using a subspace-based algorithm , 2006 .

[30]  Spilios D. Fassois,et al.  Recursive Identification of Vibrating Structures from Noise-Corrupted Observations, Part 2: Performance Evaluation via Numerical and Laboratory Experiments , 1991 .

[31]  Pol D. Spanos,et al.  Wavelets : Theoretical concepts and vibrations related applications , 2005 .

[32]  S. Fassois,et al.  Recursive identification of vibrating structures from noise-corrupted observations , 1991 .

[33]  Jonathan E. Cooper,et al.  ON-LINE PHYSICAL PARAMETER ESTIMATION WITH ADAPTIVE FORGETTING FACTORS , 2000 .

[34]  Spilios D. Fassois,et al.  A polynomial-algebraic method for non-stationary TARMA signal analysis , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[35]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[36]  Y. Grenier Parametric Time-Frequency Representations , 1989 .

[37]  Spilios D. Fassois,et al.  VibrationñBased OnñLine Fault Detection in Non-Stationary Structural Systems via a Statistical Model Based Method , 2004 .

[38]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[39]  Paul R. White,et al.  THE ANALYSIS OF NON-STATIONARY SIGNALS USING TIME-FREQUENCY METHODS , 1996 .

[40]  D. Newland Wavelet Analysis of Vibration: Part 1—Theory , 1994 .

[41]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .