THE INCREASING IMPORTANCE OF 1/f-NOISES AS MODELS OF ECOLOGICAL VARIABILITY

The features of 1/f-noise processes offer important new insights into the field of population biology, greatly helping our quest for understanding and for prediction of ecological processes. 1/f-no...

[1]  David R. Appleton,et al.  Modelling Biological Populations in Space and Time , 1993 .

[2]  Steinar Engen,et al.  A General and Dynamic Species Abundance Model, Embracing the Lognormal and the Gamma Models , 2000, The American Naturalist.

[3]  W. Kunin,et al.  Extinction risk and the 1/f family of noise models. , 1999, Theoretical population biology.

[4]  K. Gaston,et al.  Pink landscapes: 1/f spectra of spatial environmental variability and bird community composition , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  J. R. M. Hosking,et al.  FRACTIONAL DIFFERENCING MODELING IN HYDROLOGY , 1985 .

[6]  R. Palmer,et al.  Models of Extinction: A Review , 1999, adap-org/9908002.

[7]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[8]  Y. Itoh,et al.  Apparent self-organized criticality , 1996 .

[9]  Hans G. Feichtinger,et al.  Analysis, Synthesis, and Estimation of Fractal-Rate Stochastic Point Processes , 1997, adap-org/9709006.

[10]  Robert M. May,et al.  Stability and Complexity in Model Ecosystems , 2019, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Owen L. Petchey,et al.  Effects on population persistence: the interaction between environmental noise colour, intraspecific competition and space , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  R. Pearl,et al.  The biology of population growth , 2005, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[13]  R. Dietz,et al.  Clue to seal epizootic? , 1989, Nature.

[14]  R. Lande,et al.  Estimating Density Dependence from Population Time Series Using Demographic Theory and Life‐History Data , 2002, The American Naturalist.

[15]  Pejman Rohani,et al.  Intrinsically generated coloured noise in laboratory insect populations , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  A method for testing first-order Markovian property of noise phenomena including 1/ƒ noise , 1995 .

[17]  Per Lundberg,et al.  Noise colour and the risk of population extinctions , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[19]  Stuart L. Pimm,et al.  The variability of population densities , 1988, Nature.

[20]  M. Saunders,et al.  Plant-Provided Food for Carnivorous Insects: a Protective Mutualism and Its Applications , 2009 .

[21]  Yi-Cheng Zhang Complexity and 1/f noise. A phase space approach , 1991 .

[22]  John M. Halley,et al.  The long-term temporal variability and spectral colour of animal populations , 2002 .

[23]  D. T. Kaplan,et al.  A comparison of estimators for noise , 1998 .

[24]  Greenside,et al.  Implication of a power-law power-spectrum for self-affinity. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[25]  T. Gisiger Scale invariance in biology: coincidence or footprint of a universal mechanism? , 2001, Biological reviews of the Cambridge Philosophical Society.

[26]  Owen L. Petchey,et al.  Environmental colour affects aspects of single–species population dynamics , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  Arturo H. Ariño,et al.  On the nature of population extremes , 1995, Evolutionary Ecology.

[28]  S. Ellner,et al.  Chaos in Ecology: Is Mother Nature a Strange Attractor?* , 1993 .

[29]  D. Gilden Cognitive emissions of 1/f noise. , 2001, Psychological review.

[30]  Ferdinand Grüneis 1/f NOISE, INTERMITTENCY AND CLUSTERING POISON PROCESS , 2001 .

[31]  J. E. Cohen,et al.  A novel experimental apparatus to study the impact of white noise and 1/f noise on animal populations , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  R. Anderson,et al.  Power laws governing epidemics in isolated populations , 1996, Nature.

[33]  B. Drossel Biological evolution and statistical physics , 2001, cond-mat/0101409.

[34]  H. Akçakaya,et al.  Population-level mechanisms for reddened spectra in ecological time series. , 2003, The Journal of animal ecology.

[35]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[36]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[37]  M. Gillman,et al.  The variability of orchid population size , 1998 .

[38]  J. Perry,et al.  Chaos in real data : analysis of non-linear dynamics from short ecological time-series , 2000 .

[39]  James R. Gilbert,et al.  Analytical Population Dynamics , 1994 .

[40]  Athanasios S. Kallimanis,et al.  Accuracy of fractal dimension estimates for small samples of ecological distributions , 2002, Landscape Ecology.

[41]  J. Halley Ecology, evolution and 1 f -noise. , 1996, Trends in ecology & evolution.

[42]  M. Weissman 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .

[43]  K. Burnham,et al.  Sampling-variance effects on detecting density dependence from temporal trends in natural populations , 1998 .

[44]  H. Resit Akçakaya,et al.  Critiques of PVA Ask the Wrong Questions: Throwing the Heuristic Baby Out with the Numerical Bath Water , 2002, Conservation biology : the journal of the Society for Conservation Biology.

[45]  G. E. Hutchinson,et al.  CIRCULAR CAUSAL SYSTEMS IN ECOLOGY , 1948, Annals of the New York Academy of Sciences.

[46]  P. Yodzis,et al.  Black noise and population persistence , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[47]  Ichiro Tsuda,et al.  On the parallel between Zipf's law and 1/f processes in chaotic systems possessing coexisting attractors: a possible mechanism for language formation in the cerebral cortex , 1989 .

[48]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[49]  D. Ludwig Is it meaningful to estimate a probability of extinction , 1999 .

[50]  B. McArdle,et al.  Bird population densities , 1989, Nature.

[51]  Morales Viability in a pink environment: why “white noise” models can be dangerous , 1999 .

[52]  P. Verhulst,et al.  Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A , 1838 .

[53]  Stephen P. Ellner,et al.  When is it meaningful to estimate an extinction probability , 2000 .

[54]  Lawrence B. Slobodkin,et al.  A Critique for Ecology , 1991 .

[55]  B. Mandelbrot Multifractals And 1/F Noise , 1999 .

[56]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[57]  J. Steele,et al.  COUPLING BETWEEN PHYSICAL AND BIOLOGICAL SCALES , 1994 .

[58]  John Sabo,et al.  Morris, W. F., and D. F. Doak. 2003. Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Sunderland, Massachusetts, USA , 2003 .

[59]  G. Wornell Wavelet-based representations for the 1/f family of fractal processes , 1993, Proc. IEEE.

[60]  Bruce J. West,et al.  Fractal physiology for physicists: Lévy statistics , 1994 .

[61]  Ramón Margalef Perspectives in Ecological Theory , 1968 .

[62]  J. Day,et al.  Testing the Accuracy of Population Viability Analysis , 2001 .

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[65]  Charles Ashbacher,et al.  An Illustrated Guide to Theoretical Ecology , 2003 .

[66]  H. Cyr Does inter-annual variability in population density increase with time ? , 1997 .

[67]  John H. Steele,et al.  A comparison of terrestrial and marine ecological systems , 1985, Nature.

[68]  H. Fogedby On the phase space approach to complexity , 1992 .

[69]  R. Solé,et al.  Self-similarity of extinction statistics in the fossil record , 1997, Nature.

[70]  R. Levins,et al.  The effect of random variations of different types on population growth. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Stephen P. Ellner,et al.  Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis , 1995, The American Naturalist.

[72]  S. Pimm The Balance of Nature?: Ecological Issues in the Conservation of Species and Communities , 1992 .

[73]  P. Turchin Population regulation : a synthetic view , 1999 .

[74]  Brian Dennis,et al.  Estimation of Growth and Extinction Parameters for Endangered Species , 1991 .

[75]  M F Schlesinger Fractal time and 1/f noise in complex systems. , 1987, Annals of the New York Academy of Sciences.

[76]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[77]  P. Inchausti,et al.  On the relation between temporal variability and persistence time in animal populations , 2003 .

[78]  J. Kertész,et al.  The noise spectrum in the model of self-organised criticality , 1990 .

[79]  P. Szendrő,et al.  Pink-noise behaviour of biosystems , 2001, European Biophysics Journal.

[80]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[81]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[82]  Charles J. Mode,et al.  On estimating critical population size for an endangered species in the presence of environmental stochasticity , 1987 .

[83]  N. Kasdin Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation , 1995, Proc. IEEE.

[84]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[85]  R. Nisbet,et al.  Survival and production in variable resource environments , 2000, Bulletin of mathematical biology.

[86]  Brian Dennis,et al.  DENSITY DEPENDENCE IN TIME SERIES OBSERVATIONS OF NATURAL POPULATIONS: ESTIMATION AND TESTING' , 1994 .

[87]  F. D. Blasio MIRRORING OF ENVIRONMENTAL COLORED NOISE IN SPECIES EXTINCTION STATISTICS , 1998 .

[88]  Robert H. Smith,et al.  Chaos in Real Data , 2000, Population and Community Biology Series.

[89]  J. Halley Parameter drift stabilizes long‐range extinction forecasts , 2003 .

[90]  John H. Lawton,et al.  Investigating Long-Term Ecological Variability Using the Global Population Dynamics Database , 2001 .

[91]  Veijo Kaitala,et al.  Extinction risk under coloured environmental noise , 2000 .

[92]  James B. Ramsey,et al.  The statistical properties of dimension calculations using small data sets , 1990 .

[93]  K. Stroyan Applications in Ecology , 1993 .

[94]  F. Hooge Discussion of recent experiments on 1/ƒ noise , 1972 .

[95]  Paul Beier,et al.  Population viability analysis. , 2016 .

[96]  S. Goldhor Ecology , 1964, The Yale Journal of Biology and Medicine.

[97]  H. Resit Akçakaya,et al.  Predictive accuracy of population viability analysis in conservation biology , 2000, Nature.

[98]  P. Foley,et al.  Predicting Extinction Times from Environmental Stochasticity and Carrying Capacity , 1994 .

[99]  D. Doak,et al.  Book Review: Quantitative Conservation biology: Theory and Practice of Population Viability analysis , 2004, Landscape Ecology.

[100]  Jeffrey M. Hausdorff,et al.  Multiscaled randomness: A possible source of 1/f noise in biology. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[101]  G. Harris Predictive models in spatially and temporally variable freshwater systems , 1998 .

[102]  Clive W. J. Granger,et al.  An introduction to long-memory time series models and fractional differencing , 2001 .

[103]  T Coulson,et al.  The use and abuse of population viability analysis. , 2001, Trends in ecology & evolution.

[104]  I. Scheuring,et al.  Data estimation and the colour of time series. , 2001, Journal of theoretical biology.

[105]  Michael B. Bonsall,et al.  Chaos in Real Data. The Analysis of Non‐Linear Dynamics from Short Ecological Time Series , 2001 .

[106]  A. van der Ziel,et al.  On the noise spectra of semi-conductor noise and of flicker effect , 1950 .

[107]  Diversity and extinction in a lattice model of a population with fluctuating environment. , 1999 .

[108]  P. Grubb,et al.  Towards a More Exact Ecology. , 1990 .

[109]  E. Crow,et al.  Lognormal Distributions: Theory and Applications , 1987 .

[110]  Jonathan Roughgarden,et al.  A Simple Model for Population Dynamics in Stochastic Environments , 1975, The American Naturalist.