Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area.

Pulmonary toxicology studies in rats demonstrate that nanoparticles administered to the lung are more toxic than larger, fine-sized particles of similar chemistry at identical mass concentrations. The aim of this study was to evaluate the acute lung toxicity in rats of intratracheally instilled pigment-grade TiO2 particles (rutile-type particle size = approximately 300 nm) versus nanoscale TiO2 rods (anatase = 200 nm x 35 nm) or nanoscale TiO2 dots (anatase = approximately 10 nm) compared with a positive control particle type, quartz. Groups of rats were instilled with doses of 1 or 5 mg/kg of the various particle types in phosphate-buffered saline (PBS). Subsequently, the lungs of PBS- and particle-exposed rats were assessed using bronchoalveolar lavage fluid biomarkers, cell proliferation methods, and by the histopathological evaluation of lung tissue at 24 h, 1 week, 1 month, and 3 months postinstillation exposure. Exposures to nanoscale TiO2 rods or nanoscale TiO2 dots produced transient inflammatory and cell injury effects at 24 h postexposure (pe) and were not different from the pulmonary effects of larger sized TiO2 particle exposures. In contrast, pulmonary exposures to quartz particles in rats produced a dose-dependent lung inflammatory response characterized by neutrophils and foamy lipid-containing alveolar macrophage accumulation as well as evidence of early lung tissue thickening consistent with the development of pulmonary fibrosis. The results described herein provide the first example of nanoscale particle types which are not more cytotoxic or inflammogenic to the lung compared to larger sized particles of similar composition. Furthermore, these findings run counter to the postulation that surface area is a major factor associated with the pulmonary toxicity of nanoscale particle types.

[1]  Wolfgang Koch,et al.  Chronic Inhalation Exposure of Wistar Rats and two Different Strains of Mice to Diesel Engine Exhaust, Carbon Black, and Titanium Dioxide , 1995 .

[2]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[3]  W. MacNee,et al.  Ultrafine particles , 2001, Occupational and environmental medicine.

[4]  K. P. Lee,et al.  Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. , 1985, Toxicology and applied pharmacology.

[5]  David B Warheit,et al.  Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. , 2002, Toxicological sciences : an official journal of the Society of Toxicology.

[6]  J. Everitt,et al.  Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. , 2004, Toxicological sciences : an official journal of the Society of Toxicology.

[7]  Robert Gelein,et al.  Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[8]  K. Donaldson,et al.  Comparative Toxicity of Standard Nickel and Ultrafine Nickel in Lung after Intratracheal Instillation , 2003, Journal of occupational health.

[9]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[10]  D. Warheit,et al.  Development of a short-term inhalation bioassay to assess pulmonary toxicity of inhaled particles: comparisons of pulmonary responses to carbonyl iron and silica. , 1991, Toxicology and applied pharmacology.

[11]  D. Warheit,et al.  Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation. , 1997, Toxicology and applied pharmacology.

[12]  G. Oberdörster,et al.  Pulmonary retention of ultrafine and fine particles in rats. , 1992, American journal of respiratory cell and molecular biology.