Three-dimensional numerical wave tank simulations on fully nonlinear wave–current–body interactions

[1]  A. Clément Coupling of Two Absorbing Boundary Conditions for 2D Time-Domain Simulations of Free Surface Gravity Waves , 1996 .

[2]  Ming Zhu,et al.  On the accuracy of numerical wave making techniques , 1993 .

[3]  Michael Isaacson,et al.  TIME-DOMAIN SECOND-ORDER WAVE DIFFRACTION IN THREE-DIMENSIONS , 1992 .

[4]  H. Miyata,et al.  A finite difference method for 3D flows about bodies of complex geometry in rectangular co-ordinate systems , 1992 .

[5]  Moo-Hyun Kim,et al.  The complete second-order diffraction solution for an axisymmetric body Part 1. Monochromatic incident waves , 1989, Journal of Fluid Mechanics.

[6]  Dick K. P. Yue,et al.  Numerical simulations of nonlinear axisymmetric flows with a free surface , 1987, Journal of Fluid Mechanics.

[7]  Michael Selwyn Longuet-Higgins,et al.  The deformation of steep surface waves on water - I. A numerical method of computation , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[9]  M. H. Kim,et al.  A Numerical Wave Tank for Nonlinear Wave Simulations , 1998 .

[10]  Jong-Chun Park,et al.  Fully Nonlinear Wave-Current-Body Interactions By a 3D Viscous Numerical Wave Tank , 1998 .

[11]  Robert F. Beck,et al.  Time-domain computations for floating bodies , 1994 .

[12]  J. Niedzwecki,et al.  EXPERIMENTAL MEASUREMENT OF SECOND-ORDER DIFFRACTION BY A TRUNCATED VERTICAL CYLINDER IN MONOCHROMATIC WAVES , 1994 .