On orthogonal tensors and best rank-one approximation ratio

As is well known, the smallest possible ratio between the spectral norm and the Frobenius norm of an $m \times n$ matrix with $m \le n$ is $1/\sqrt{m}$ and is (up to scalar scaling) attained only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible ratio between spectral and Frobenius norms of $n_1 \times \dots \times n_d$ tensors of order $d$, also called the best rank-one approximation ratio in the literature, is investigated. The exact value is not known for most configurations of $n_1 \le \dots \le n_d$. Using a natural definition of orthogonal tensors over the real field (resp., unitary tensors over the complex field), it is shown that the obvious lower bound $1/\sqrt{n_1 \cdots n_{d-1}}$ is attained if and only if a tensor is orthogonal (resp., unitary) up to scaling. Whether or not orthogonal or unitary tensors exist depends on the dimensions $n_1,\dots,n_d$ and the field. A connection between the (non)existence of real orthogonal tensors of order three and the classical Hurwitz problem on composition algebras can be established: existence of orthogonal tensors of size $\ell \times m \times n$ is equivalent to the admissibility of the triple $[\ell,m,n]$ to the Hurwitz problem. Some implications for higher-order tensors are then given. For instance, real orthogonal $n \times \dots \times n$ tensors of order $d \ge 3$ do exist, but only when $n = 1,2,4,8$. In the complex case, the situation is more drastic: unitary tensors of size $\ell \times m \times n$ with $\ell \le m \le n$ exist only when $\ell m \le n$. Finally, some numerical illustrations for spectral norm computation are presented.

[1]  K. Shadan,et al.  Available online: , 2012 .

[2]  J. Radon Lineare scharen orthogonaler matrizen , 1922 .

[3]  A. Hurwitz,et al.  Über die Komposition der quadratischen Formen , 1922 .

[4]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  J. Peetre,et al.  Schatten-von Neumann classes of multilinear forms , 1992 .

[7]  P. Yiu Composition of Sums of Squares with Integer Coefficients , 1994 .

[8]  J. Peetre,et al.  On Gp‐Classes of Trilinear Forms , 1999 .

[9]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[10]  Daniel B. Shapiro,et al.  Compositions of Quadratic Forms , 2000 .

[11]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[12]  J. Peetre,et al.  Extreme points of the complex binary trilinear ball , 2000 .

[13]  A. Sudbery,et al.  How entangled can two couples get , 2000, quant-ph/0005013.

[14]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[15]  J. Peetre,et al.  Embedding constants of trilinear Schatten–von Neumann classes , 2006, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics.

[16]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[17]  D. Gross,et al.  Most quantum States are too entangled to be useful as computational resources. , 2008, Physical review letters.

[18]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[19]  Lin Chen,et al.  Computation of the geometric measure of entanglement for pure multiqubit states , 2010 .

[20]  V. Ovsienko,et al.  New solutions to the Hurwitz problem on square identities , 2010, 1007.2337.

[21]  Trac D. Tran,et al.  Tensor sparsification via a bound on the spectral norm of random tensors , 2010, ArXiv.

[22]  Shuzhong Zhang,et al.  Approximation algorithms for homogeneous polynomial optimization with quadratic constraints , 2010, Math. Program..

[23]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[24]  Liqun Qi,et al.  The Best Rank-One Approximation Ratio of a Tensor Space , 2011, SIAM J. Matrix Anal. Appl..

[25]  HMED,et al.  A Spectral Theory for Tensors , 2011 .

[26]  Shuzhong Zhang,et al.  Maximum Block Improvement and Polynomial Optimization , 2012, SIAM J. Optim..

[27]  Renato Pajarola,et al.  On best rank one approximation of tensors , 2013, Numer. Linear Algebra Appl..

[28]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[29]  Pierre Comon,et al.  Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.

[30]  Ryota Tomioka,et al.  Spectral norm of random tensors , 2014, 1407.1870.

[31]  Yao-Lin Jiang,et al.  On the Uniqueness and Perturbation to the Best Rank-One Approximation of a Tensor , 2015, SIAM J. Matrix Anal. Appl..

[32]  A. Uschmajew,et al.  Some results concerning rank-one truncated steepest descent directions in tensor spaces , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[33]  Deyu,et al.  The bounds for the best rank-1 approximation ratio of a finite dimensional tensor space , 2015 .

[34]  S. Friedland,et al.  Theoretical and computational aspects of entanglement , 2017, 1705.07160.

[35]  Shmuel Friedland,et al.  Nuclear norm of higher-order tensors , 2014, Math. Comput..