暂无分享,去创建一个
André Uschmajew | Zhening Li | Yuji Nakatsukasa | Tasuku Soma | Y. Nakatsukasa | A. Uschmajew | Tasuku Soma | Zhening Li | André Uschmajew
[1] K. Shadan,et al. Available online: , 2012 .
[2] J. Radon. Lineare scharen orthogonaler matrizen , 1922 .
[3] A. Hurwitz,et al. Über die Komposition der quadratischen Formen , 1922 .
[4] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[5] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[6] J. Peetre,et al. Schatten-von Neumann classes of multilinear forms , 1992 .
[7] P. Yiu. Composition of Sums of Squares with Integer Coefficients , 1994 .
[8] J. Peetre,et al. On Gp‐Classes of Trilinear Forms , 1999 .
[9] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[10] Daniel B. Shapiro,et al. Compositions of Quadratic Forms , 2000 .
[11] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[12] J. Peetre,et al. Extreme points of the complex binary trilinear ball , 2000 .
[13] A. Sudbery,et al. How entangled can two couples get , 2000, quant-ph/0005013.
[14] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[15] J. Peetre,et al. Embedding constants of trilinear Schatten–von Neumann classes , 2006, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics.
[16] 採編典藏組. Society for Industrial and Applied Mathematics(SIAM) , 2008 .
[17] D. Gross,et al. Most quantum States are too entangled to be useful as computational resources. , 2008, Physical review letters.
[18] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[19] Lin Chen,et al. Computation of the geometric measure of entanglement for pure multiqubit states , 2010 .
[20] V. Ovsienko,et al. New solutions to the Hurwitz problem on square identities , 2010, 1007.2337.
[21] Trac D. Tran,et al. Tensor sparsification via a bound on the spectral norm of random tensors , 2010, ArXiv.
[22] Shuzhong Zhang,et al. Approximation algorithms for homogeneous polynomial optimization with quadratic constraints , 2010, Math. Program..
[23] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[24] Liqun Qi,et al. The Best Rank-One Approximation Ratio of a Tensor Space , 2011, SIAM J. Matrix Anal. Appl..
[25] HMED,et al. A Spectral Theory for Tensors , 2011 .
[26] Shuzhong Zhang,et al. Maximum Block Improvement and Polynomial Optimization , 2012, SIAM J. Optim..
[27] Renato Pajarola,et al. On best rank one approximation of tensors , 2013, Numer. Linear Algebra Appl..
[28] Lieven De Lathauwer,et al. Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..
[29] Pierre Comon,et al. Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.
[30] Ryota Tomioka,et al. Spectral norm of random tensors , 2014, 1407.1870.
[31] Yao-Lin Jiang,et al. On the Uniqueness and Perturbation to the Best Rank-One Approximation of a Tensor , 2015, SIAM J. Matrix Anal. Appl..
[32] A. Uschmajew,et al. Some results concerning rank-one truncated steepest descent directions in tensor spaces , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).
[33] Deyu,et al. The bounds for the best rank-1 approximation ratio of a finite dimensional tensor space , 2015 .
[34] S. Friedland,et al. Theoretical and computational aspects of entanglement , 2017, 1705.07160.
[35] Shmuel Friedland,et al. Nuclear norm of higher-order tensors , 2014, Math. Comput..