Using rough sets to edit training set in k-NN method

Rough set theory (RST) is a technique for data analysis. In this paper, we use RST to improve the performance of the k-NN method. The RST is used to edit the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of the k-NN using these techniques.

[1]  Sankar K. Pal,et al.  Web mining in soft computing framework: relevance, state of the art and future directions , 2002, IEEE Trans. Neural Networks.

[2]  Aleksander Øhrn ROSETTA Technical Reference Manual , 2001 .

[3]  David A. Bell,et al.  Computational Methods for Rough Classification and Discovery , 1998, J. Am. Soc. Inf. Sci..

[4]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[5]  Ramón López de Mántaras,et al.  Machine Learning from Examples: Inductive and Lazy Methods , 1998, Data Knowl. Eng..

[6]  Francis Eng Hock Tay,et al.  Economic and financial prediction using rough sets model , 2002, Eur. J. Oper. Res..

[7]  Z. Pawlak,et al.  Rough sets perspective on data and knowledge , 2002 .

[8]  David G. Lowe,et al.  Similarity Metric Learning for a Variable-Kernel Classifier , 1995, Neural Computation.

[9]  Pedro M. Domingos,et al.  Unifying Instance-Based and Rule-Based Induction , 1996 .

[10]  Victor W. Marek,et al.  Myths about rough set theory , 1998, CACM.

[11]  Tony R. Martinez,et al.  Reduction Techniques for Instance-Based Learning Algorithms , 2000, Machine Learning.

[12]  Eduardo Gasca,et al.  Correcting the Training Data , 2003 .

[13]  Pedro M. Domingos Unifying Instance-Based and Rule-Based Induction , 1996, Machine Learning.

[14]  Ron Kohavi,et al.  Useful Feature Subsets and Rough Set Reducts , 1994 .

[15]  Hugh B. Woodruff,et al.  An algorithm for a selective nearest neighbor decision rule (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[16]  Vijay V. Raghavan,et al.  Feature Selection and Effective Classifiers , 1998, J. Am. Soc. Inf. Sci..

[17]  Z. Pawlak,et al.  A Rough Set Perspective on Data andKnowledge ? , 1999 .

[18]  Andrzej Skowron,et al.  Rough Sets: A Tutorial , 1998 .

[19]  Peter Vrancx,et al.  Using ACO and rough set theory to feature selection , 2005 .

[20]  S. Halgamuge,et al.  Reducing the Number of Training Samples for Fast Support Vector Machine Classification , 2004 .

[21]  Andrzej Skowron,et al.  Rough-Fuzzy Hybridization: A New Trend in Decision Making , 1999 .

[22]  A. Arbor,et al.  Case-Based Learning Algorithms , 1991 .

[23]  Rafael Bello,et al.  A model based on ant colony system and rough set theory to feature selection , 2005, GECCO '05.

[24]  Szymon Wilk,et al.  ROSE - Software Implementation of the Rough Set Theory , 1998, Rough Sets and Current Trends in Computing.

[25]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[26]  F. Pla,et al.  Reducing Training Sets by NCN-based Exploratory Procedures , 2003, IbPRIA.

[27]  Aleksander Ohrn,et al.  ROSETTA -- A Rough Set Toolkit for Analysis of Data , 1997 .