Disentangling Structural Confusion through Machine Learning: Structure Prediction and Polymorphism of Equiatomic Ternary Phases ABC.

A method to predict the crystal structure of equiatomic ternary compositions based only on the constituent elements was developed using cluster resolution feature selection (CR-FS) and support vector machine (SVM) classification. The supervised machine-learning model was first trained with 1037 individual compounds that adopt the most populated ternary 1:1:1 structure types (TiNiSi-, ZrNiAl-, PbFCl-, LiGaGe-, YPtAs-, UGeTe-, and LaPtSi-type) and then validated using an additional 519 compounds. The CR-FS algorithm improves class discrimination and indicates that 113 variables including size, electronegativity, number of valence electrons, and position on the periodic table (group number) influence the structure preference. The final model prediction sensitivity, specificity, and accuracy were 97.3%, 93.9%, and 96.9%, respectively, establishing that this method is capable of reliably predicting the crystal structure given only its composition. The power of CR-FS and SVM classification is further demonstrated by segregating the crystal structure of polymorphs, specifically to examine polymorphism in TiNiSi- and ZrNiAl-type structures. Analyzing 19 compositions that are experimentally reported in both structure types, this machine-learning model correctly identifies, with high confidence (>0.7), the low-temperature polymorph from its high-temperature form. Interestingly, machine learning also reveals that certain compositions cannot be clearly differentiated and lie in a "confused" region (0.3-0.7 confidence), suggesting that both polymorphs may be observed in a single sample at certain experimental conditions. The ensuing synthesis and characterization of TiFeP adopting both TiNiSi- and ZrNiAl-type structures in a single sample, even after long annealing times (3 months), validate the occurrence of the region of structural uncertainty predicted by machine learning.

[1]  Ya. F. Lomnytska,et al.  New phosphides of IVa and Va group metals with TiNiSi-type , 1998 .

[2]  P. Villars,et al.  A three-dimensional structural stability diagram for 1011 binary AB2 intermetallic compounds: II , 1983 .

[3]  M. Pedeferri,et al.  Interference Colors of Thin Oxide Layers on Titanium , 2008 .

[4]  M. Wołcyrz,et al.  Crystal structure of RNiPb (R=Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) compounds , 2000 .

[5]  D. C. Ghosh,et al.  Gordy's electrostatic scale of electronegativity revisited , 2009 .

[6]  F. Hulliger On the rare-earth palladium aluminides LnPdAl , 1995 .

[7]  G. Ceder,et al.  Induction time of a polymorphic transformation , 2017 .

[8]  I. R. Harris,et al.  Hydrogen sorption properties of intermetallic TbNiAl and crystal structure of TbNiAlD1.1 , 1998 .

[9]  M. Diviš,et al.  U ternaries with ZrNiAl structure — lattice properties , 2001 .

[10]  W. Tong,et al.  Impact of solid state properties on developability assessment of drug candidates. , 2004, Advanced drug delivery reviews.

[11]  E. G. Rochow,et al.  A scale of electronegativity based on electrostatic force , 1958 .

[12]  A. Mar,et al.  X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides M2P and M3P (M = Cr−Ni) , 2008 .

[13]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[14]  Shuichi Iwata,et al.  Data-driven atomic environment prediction for binaries using the Mendeleev number: Part 1. Composition AB , 2004 .

[15]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[16]  Hitomi Yuki,et al.  Prediction of Ligand-Induced Structural Polymorphism of Receptor Interaction Sites Using Machine Learning , 2013, J. Chem. Inf. Model..

[17]  B. B. Zvyagin Polytypism of crystal structures , 1988 .

[18]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[19]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[20]  W. B. Pearson,et al.  On the crystal chemistry of normal valence compounds , 1959 .

[21]  J. C. Phillips,et al.  Dielectric Classification of Crystal Structures, Ionization Potentials, and Band Structures , 1969 .

[22]  R. Abegg Die Valenz und das periodische System. Versuch einer Theorie der Molekularverbindungen , 1904 .

[23]  Alex Zunger,et al.  Systematization of the stable crystal structure of all AB-type binary compounds: A pseudopotential orbital-radii approach , 1980 .

[24]  D. G. Pettifor,et al.  A chemical scale for crystal-structure maps , 1984 .

[25]  J. Harynuk,et al.  Automated optimization and construction of chemometric models based on highly variable raw chromatographic data. , 2011, Analytica chimica acta.

[26]  A. Palenzona,et al.  Valency changes of ytterbium in YbMnGe and in the YbMnSi1−xGex pseudo-ternary system , 2002 .

[27]  E. Parthé,et al.  Equiatomic ternary rare earth-transition metal silicides, germanides and gallides , 1982 .

[28]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[29]  A. Oliynyk,et al.  The Ti-Fe-P system: phase equilibria and crystal structure of phases , 2013 .

[30]  Krishna Rajan,et al.  “Property Phase Diagrams” for Compound Semiconductors through Data Mining , 2013, Materials.

[31]  Xin Lu,et al.  Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. , 2009, Analytica chimica acta.

[32]  Alok Choudhary,et al.  Combinatorial screening for new materials in unconstrained composition space with machine learning , 2014 .

[33]  Kevin J. Johnson,et al.  Pattern recognition of jet fuels: comprehensive GC×GC with ANOVA-based feature selection and principal component analysis , 2002 .

[34]  E. du Pasquier,et al.  Chemical fingerprinting of unevaporated automotive gasoline samples. , 2003, Forensic science international.

[35]  Nirupam Chakraborti,et al.  Analyzing Sparse Data for Nitride Spinels Using Data Mining, Neural Networks, and Multiobjective Genetic Algorithms , 2008 .

[36]  H. Eckert,et al.  45Sc Solid State NMR studies of the silicides ScTSi (T=Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) , 2011 .

[37]  Miguel A. L. Marques,et al.  Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine Learning , 2017 .

[38]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .

[39]  R. Pöttgen,et al.  Structure and Properties of Dimorphic CePdZn , 2009 .

[40]  R. Friesner Ab initio quantum chemistry: methodology and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Roger,et al.  Structural transitions between phosphides, arsenides and arsenophoshides of the composition M2 P, M2 As and M2(P 1?xAsx) , 1971 .

[42]  Alok Choudhary,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016 .

[43]  Jerome G. P. Wicker,et al.  Will they co-crystallize? , 2017 .

[44]  E. Lingen Aspects of coloured precious metal intermetallic compounds , 2014 .

[45]  R. Hoffmann,et al.  The TiNiSi Family of Compounds: Structure and Bonding , 1998 .

[46]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[47]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[48]  James J. Harynuk,et al.  Classifying Crystal Structures of Binary Compounds AB through Cluster Resolution Feature Selection and Support Vector Machine Analysis , 2016 .

[49]  Structure and properties: Mooser-Pearson plots , 1985 .

[50]  B. Kotur,et al.  A note on the crystal structure of two ScCuSi phases , 1981 .

[51]  B. Malaman,et al.  Crystal and magnetic structures of the R(=Y, Dy–Tm)MnGe compounds , 2003 .

[52]  A. Mar,et al.  Next-nearest neighbour contributions to P 2p3/2 X-ray photoelectron binding energy shifts of mixed transition-metal phosphides M1−xM′xP with the MnP-type structure , 2007 .

[53]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[54]  E. Parthé,et al.  STRUCTURE TIDY– a computer program to standardize crystal structure data , 1987 .

[55]  Philip Doble,et al.  Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks. , 2003, Forensic science international.

[56]  R. Pöttgen,et al.  Dimorphic YbPdSn with ZrNiAl and TiNiSi type structure , 1998 .

[57]  G. Miller,et al.  Ternary Metal-Rich Phosphides: Structure, Bonding, and Site Preferences in ZrNbP and Hf1+xMo1-xP , 1995 .

[58]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[59]  Mark E. Oxley,et al.  Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number , 2001 .

[60]  C. K. Ingold The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1940, Nature.

[61]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[62]  R. Asahi,et al.  Measurement and ab initio calculation of the structural parameters and physical properties of 3d transition intermetallics TiMP (M  =  Cr, Mn, Fe, Co, or Ni) , 2017 .

[63]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[64]  Rebecca Cheung,et al.  Silicon Carbide Microelectromechanical Systems for Harsh Environments , 2006 .

[65]  Robert E. Synovec,et al.  Application of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method to identify potential biomarkers of perinatal asphyxia in a non-human primate model. , 2011, Journal of chromatography. A.

[66]  C. Djerassi,et al.  The Crystal Structure of ZrFeP and Related Compounds. , 1966 .

[67]  A. Rouault,et al.  Nouveaux composes ternaires MM'P et MM'As interactions metalliques et structures , 1972 .