Probing single electrons across 300 mm spin qubit wafers

Building a fault-tolerant quantum computer will require vast numbers of physical qubits. For qubit technologies based on solid state electronic devices, integrating millions of qubits in a single processor will require device fabrication to reach a scale comparable to that of the modern CMOS industry. Equally importantly, the scale of cryogenic device testing must keep pace to enable efficient device screening and to improve statistical metrics like qubit yield and process variation. Spin qubits have shown impressive control fidelities but have historically been challenged by yield and process variation. In this work, we present a testing process using a cryogenic 300 mm wafer prober to collect high-volume data on the performance of industry-manufactured spin qubit devices at 1.6 K. This testing method provides fast feedback to enable optimization of the CMOS-compatible fabrication process, leading to high yield and low process variation. Using this system, we automate measurements of the operating point of spin qubits and probe the transitions of single electrons across full wafers. We analyze the random variation in single-electron operating voltages and find that this fabrication process leads to low levels of disorder at the 300 mm scale. Together these results demonstrate the advances that can be achieved through the application of CMOS industry techniques to the fabrication and measurement of spin qubits.

[1]  R. Kotlyar,et al.  Mitigating Impact of Defects On Performance with Classical Device Engineering of Scaled Si/SiGe Qubit Arrays , 2022, International Electron Devices Meeting.

[2]  M. Veldhorst,et al.  Shared control of a 16 semiconductor quantum dot crossbar array , 2022, Nature nanotechnology.

[3]  B. P. Wuetz,et al.  Universal control of a six-qubit quantum processor in silicon , 2022, Nature.

[4]  C. G. Almudever,et al.  A quantum dot crossbar with sublinear scaling of interconnects at cryogenic temperature , 2022, npj Quantum Information.

[5]  Aaron M. Jones,et al.  Universal logic with encoded spin qubits in silicon , 2022, Nature.

[6]  L. Vandersypen,et al.  Quantum logic with spin qubits crossing the surface code threshold , 2022, Nature.

[7]  G. Burkard,et al.  Semiconductor spin qubits , 2021, Reviews of Modern Physics.

[8]  J. Petta,et al.  Two-qubit silicon quantum processor with operation fidelity exceeding 99% , 2021, Science advances.

[9]  J. P. Dehollain,et al.  Spiderweb Array: A Sparse Spin-Qubit Array , 2021, Physical Review Applied.

[10]  S. Tarucha,et al.  Fast universal quantum gate above the fault-tolerance threshold in silicon , 2021, Nature.

[11]  Justyna P. Zwolak,et al.  Toward Robust Autotuning of Noisy Quantum Dot Devices , 2021, Physical Review Applied.

[12]  S. D. Ha,et al.  A Flexible Design Platform for Si/SiGe Exchange-Only Qubits with Low Disorder. , 2021, Nano letters.

[13]  J. Williams,et al.  Crystalline materials for quantum computing: Semiconductor heterostructures and topological insulators exemplars , 2021, MRS Bulletin.

[14]  J. P. Dehollain,et al.  Qubits made by advanced semiconductor manufacturing , 2021, Nature Electronics.

[15]  A. Wieck,et al.  Coherent control of individual electron spins in a two-dimensional quantum dot array , 2020, Nature Nanotechnology.

[16]  T. Ivanov,et al.  A flexible 300 mm integrated Si MOS platform for electron- and hole-spin qubits exploration , 2020, 2020 IEEE International Electron Devices Meeting (IEDM).

[17]  M. Vinet,et al.  Single-electron operations in a foundry-fabricated array of quantum dots , 2020, Nature Communications.

[18]  C. G. Almudever,et al.  Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures , 2020, npj Quantum Information.

[19]  L. M. K. Vandersypen,et al.  High Volume Electrical Characterization of Semiconductor Qubits , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[20]  C. G. Almudever,et al.  Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures , 2019, npj Quantum Information.

[21]  J. Nelson,et al.  Low-frequency charge noise in Si/SiGe quantum dots , 2019, Physical Review B.

[22]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[23]  P. T. Eendebak,et al.  Loading a quantum-dot based “Qubyte” register , 2019, npj Quantum Information.

[24]  Guang-Can Guo,et al.  Semiconductor quantum computation , 2018, National science review.

[25]  J. Petta,et al.  Shuttling a single charge across a one-dimensional array of silicon quantum dots , 2018, Nature Communications.

[26]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[27]  M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[28]  L. Edge,et al.  Metamorphic materials for quantum computing , 2016 .

[29]  J. R. Petta,et al.  A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots , 2015, 1502.01624.

[30]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[31]  R. S. Ross,et al.  Undoped accumulation-mode Si/SiGe quantum dots , 2014, Nanotechnology.

[32]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[33]  D. E. Savage,et al.  Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum dots for high-throughput testing , 2013, 1305.1837.

[34]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[35]  M. D. Giles,et al.  Process Technology Variation , 2011, IEEE Transactions on Electron Devices.

[36]  Chenming Calvin Hu,et al.  Modern Semiconductor Devices for Integrated Circuits , 2009 .

[37]  R. N. Schouten,et al.  Cryogenic amplifier for fast real-time detection of single-electron tunneling , 2007, 0708.0461.

[38]  John M. Martinis,et al.  Implementing Qubits with Superconducting Integrated Circuits , 2004, Quantum Inf. Process..

[39]  Keeley A. Crockett,et al.  Differential charge sensing and charge delocalization in a tunable double quantum dot. , 2003, Physical review letters.

[40]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[41]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[42]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[43]  J. Saiz,et al.  Right‐sided non‐recurrent laryngeal nerve without any vascular anomaly: an anatomical trap , 2021, ANZ journal of surgery.

[44]  J. Verduijn Silicon Quantum Electronics , 2012 .

[45]  J. Bird Electron transport in quantum dots , 2003 .