Dimension and basis construction for C2-smooth isogeometric spline spaces over bilinear-like G2 two-patch parameterizations

A particular class of planar two-patch geometries, called bilinear-like $G^{2}$ two-patch geometries, is introduced. This class includes the subclass of all bilinear two-patch parameterizations and possesses similar connectivity functions along the patch interface. It is demonstrated that the class of bilinear-like $G^2$ two-patch parameterizations is much wider than the class of bilinear parameterizations and can approximate with good quality given generic two-patch parameterizations. We investigate the space of $C^{2}$-smooth isogeometric functions over this specific class of two-patch geometries. The study is based on the equivalence of the $C^2$-smoothness of an isogeometric function and the $G^2$-smoothness of its graph surface (cf. [12, 20]). The dimension of the space is computed and an explicit basis construction is presented. The resulting basis functions possess simple closed form representations, have small local supports, and are well-conditioned. In addition, we introduce a subspace whose basis functions can be generated uniformly for all possible configurations of bilinear-like $G^{2}$ two-patch parameterizations. Numerical results obtained by performing $L^{2}$-approximation indicate that already the subspace possesses optimal approximation properties.

[1]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries , 2017 .

[2]  Ron Goldman,et al.  Pyramid algorithms - a dynamic programming approach to curves and surfaces for geometric modeling , 2002, Morgan Kaufmann series in computer graphics and geometric modeling.

[3]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[4]  Mario Kapl,et al.  Space of C2-smooth geometrically continuous isogeometric functions on planar multi-patch geometries: Dimension and numerical experiments , 2017, Comput. Math. Appl..

[5]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[6]  Giancarlo Sangalli,et al.  Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..

[7]  Alfio Quarteroni,et al.  Isogeometric Analysis for second order Partial Differential Equations on surfaces , 2015 .

[8]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[9]  Jörg Peters Smooth mesh interpolation with cubic patches , 1990, Comput. Aided Des..

[10]  Hans-Peter Seidel,et al.  An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.

[11]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[12]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[13]  Mario Kapl,et al.  Construction of analysis-suitable G1 planar multi-patch parameterizations , 2017, Comput. Aided Des..

[14]  Alfio Quarteroni,et al.  Isogeometric Analysis and error estimates for high order partial differential equations in Fluid Dynamics , 2014 .

[15]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on two-patch geometries , 2015, Comput. Math. Appl..

[16]  Alfio Quarteroni,et al.  MATHICSE Technical Report : Isogeometric analysis of high order partial differential equations on surfaces , 2015 .

[17]  Mario Kapl,et al.  Space of C2-smooth geometrically continuous isogeometric functions on two-patch geometries , 2017, Comput. Math. Appl..

[18]  A. Bruaset A survey of preconditioned iterative methods , 1995 .

[19]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[20]  Mario Kapl,et al.  Dimension and basis construction for analysis-suitable G1 two-patch parameterizations , 2017, Comput. Aided Geom. Des..

[21]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[22]  Jörg Peters,et al.  C1 finite elements on non-tensor-product 2d and 3d manifolds , 2016, Appl. Math. Comput..

[23]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[24]  Hendrik Speleers,et al.  Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis , 2017 .

[25]  Bernard Mourrain,et al.  G1-smooth splines on quad meshes with 4-split macro-patch elements , 2017, Comput. Aided Geom. Des..

[26]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[27]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[28]  Jörg Peters,et al.  Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..

[29]  Alessandro Reali,et al.  Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates , 2017 .

[30]  Jörg Peters,et al.  A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.

[31]  Xianming Chen,et al.  An Algorithm for Direct Multiplication of B-Splines , 2009, IEEE Transactions on Automation Science and Engineering.

[32]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[33]  Xesús Nogueira,et al.  An unconditionally energy-stable method for the phase field crystal equation , 2012 .

[34]  Bernard Mourrain,et al.  Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology , 2016, Comput. Aided Geom. Des..

[35]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[36]  Jörg Peters,et al.  Refinable G1 functions on G1 free-form surfaces , 2017, Comput. Aided Geom. Des..

[37]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[38]  Hector Gomez,et al.  Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells , 2017, Comput. Aided Des..

[39]  Larry L. Schumaker,et al.  Spline Functions on Triangulations: Triangulations and Quadrangulations , 2007 .

[40]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[41]  Jörg Peters,et al.  Matched Gk-constructions always yield Ck-continuous isogeometric elements , 2015, Comput. Aided Geom. Des..

[42]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[43]  H. Nguyen-Xuan,et al.  Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling , 2017 .

[44]  T. Hughes,et al.  Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations , 2017 .

[45]  Wayne Liu A simple, efficient degree raising algorithm for B-spline curves , 1997, Comput. Aided Geom. Des..

[46]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .