An interpretation of system F through bar recursion
暂无分享,去创建一个
[1] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[2] Andreas Abel. Weak beta-theta-Normalization and Normalization by Evaluation for System F , 2008, LPAR.
[3] Paulo Oliva,et al. MODIFIED BAR RECURSION AND CLASSICAL DEPENDENT CHOICE , 2004 .
[4] Ulrich Berger,et al. Program Extraction from Normalization Proofs , 2006, Stud Logica.
[5] Thierry Coquand,et al. On the computational content of the axiom of choice , 1994, The Journal of Symbolic Logic.
[6] John C. Reynolds,et al. Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.
[7] W. Tait. A realizability interpretation of the theory of species , 1975 .
[8] C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .
[9] Roberto M. Amadio,et al. Domains and Lambda-Calculi (Cambridge Tracts in Theoretical Computer Science) , 2008 .
[10] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[11] Philip Wadler,et al. The Girard-Reynolds isomorphism (second edition) , 2007, Theor. Comput. Sci..
[12] Roberto M. Amadio,et al. Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.
[13] Martin Hofmann,et al. Reduction-free normalisation for a polymorphic system , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[14] J. Diller. Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen , 1974 .
[15] Jean-Louis Krivine,et al. Bar Recursion in Classical Realisability: Dependent Choice and Continuum Hypothesis , 2015, CSL.
[16] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .