A survey on concept drift adaptation

Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this article, we characterize adaptive learning processes; categorize existing strategies for handling concept drift; overview the most representative, distinct, and popular techniques and algorithms; discuss evaluation methodology of adaptive algorithms; and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state of the art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts, and practitioners.

[1]  Q. Mcnemar Note on the sampling error of the difference between correlated proportions or percentages , 1947, Psychometrika.

[2]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[3]  C. Dunnett A Multiple Comparison Procedure for Comparing Several Treatments with a Control , 1955 .

[4]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[5]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[6]  David G. Stork,et al.  Pattern Classification , 1973 .

[7]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[8]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[9]  Jeffrey Scott Vitter,et al.  Random sampling with a reservoir , 1985, TOMS.

[10]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[11]  Stephen Grossberg,et al.  Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system , 1991, Neural Networks.

[12]  Stephen Grossberg,et al.  ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network , 1991, [1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering.

[13]  Tomasz Imielinski,et al.  An Interval Classifier for Database Mining Applications , 1992, VLDB.

[14]  Marcos Salganicoff,et al.  Density-Adaptive Learning and Forgetting , 1993, ICML.

[15]  Gerhard Widmer,et al.  Effective Learning in Dynamic Environments by Explicit Context Tracking , 1993, ECML.

[16]  Tomasz Imielinski,et al.  Database Mining: A Performance Perspective , 1993, IEEE Trans. Knowl. Data Eng..

[17]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[18]  Manfred K. Warmuth,et al.  The Weighted Majority Algorithm , 1994, Inf. Comput..

[19]  Ryszard S. Michalski,et al.  A method for partial-memory incremental learning and its application to computer intrusion detection , 1995, Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence.

[20]  Vladimir Vovk,et al.  A game of prediction with expert advice , 1995, COLT '95.

[21]  Rakesh Agrawal,et al.  SPRINT: A Scalable Parallel Classifier for Data Mining , 1996, VLDB.

[22]  Jorma Rissanen,et al.  SLIQ: A Fast Scalable Classifier for Data Mining , 1996, EDBT.

[23]  Ingrid Renz,et al.  Adaptive Information Filtering: Learning in the Presence of Concept Drifts , 1998 .

[24]  R. French Catastrophic forgetting in connectionist networks , 1999, Trends in Cognitive Sciences.

[25]  Niall M. Adams,et al.  The impact of changing populations on classifier performance , 1999, KDD '99.

[26]  M. Harries SPLICE-2 Comparative Evaluation: Electricity Pricing , 1999 .

[27]  Huan Liu,et al.  Handling concept drifts in incremental learning with support vector machines , 1999, KDD '99.

[28]  R. French,et al.  Catastrophic Forgetting in Connectionist Networks: Causes, Consequences and Solutions , 1994 .

[29]  Thorsten Joachims,et al.  Detecting Concept Drift with Support Vector Machines , 2000, ICML.

[30]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[31]  Geoff Hulten,et al.  Mining high-speed data streams , 2000, KDD '00.

[32]  Thorsten Joachims,et al.  Estimating the Generalization Performance of an SVM Efficiently , 2000, ICML.

[33]  Christophe G. Giraud-Carrier,et al.  A Note on the Utility of Incremental Learning , 2000, AI Commun..

[34]  Ivan Koychev,et al.  Gradual Forgetting for Adaptation to Concept Drift , 2000 .

[35]  Geoff Hulten,et al.  Mining time-changing data streams , 2001, KDD '01.

[36]  Carsten Lanquillon,et al.  Enhancing Text Classification to Improve Information Filtering , 2001, Künstliche Intell..

[37]  Vasant Honavar,et al.  Learn++: an incremental learning algorithm for supervised neural networks , 2001, IEEE Trans. Syst. Man Cybern. Part C.

[38]  William Nick Street,et al.  A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.

[39]  Ivan Koychev,et al.  Tracking Changing User Interests through Prior-Learning of Context , 2002, AH.

[40]  Piotr Indyk,et al.  Maintaining Stream Statistics over Sliding Windows , 2002, SIAM J. Comput..

[41]  Jennifer Widom,et al.  Models and issues in data stream systems , 2002, PODS.

[42]  Matjaz Kukar,et al.  Drifting Concepts as Hidden Factors in Clinical Studies , 2003, AIME.

[43]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[44]  João Gama,et al.  Adaptive Bayes for a Student Modeling Prediction Task Based on Learning Styles , 2003, User Modeling.

[45]  Ralf Klinkenberg,et al.  Predicting Phases in Business Cycles Under Concept Drift , 2003 .

[46]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[47]  Marcus A. Maloof,et al.  Dynamic weighted majority: a new ensemble method for tracking concept drift , 2003, Third IEEE International Conference on Data Mining.

[48]  Claude Sammut,et al.  Extracting Hidden Context , 1998, Machine Learning.

[49]  J. C. Schlimmer,et al.  Incremental learning from noisy data , 2004, Machine Learning.

[50]  Philip M. Long,et al.  Tracking Drifting Concepts By Minimizing Disagreements , 2004, Machine Learning.

[51]  Philip M. Long,et al.  Tracking drifting concepts by minimizing disagreements , 2004, Machine Learning.

[52]  Mark Herbster,et al.  Tracking the Best Expert , 1995, Machine Learning.

[53]  Alexey Tsymbal,et al.  The problem of concept drift: definitions and related work , 2004 .

[54]  João Gama,et al.  Learning with Drift Detection , 2004, SBIA.

[55]  Svetha Venkatesh,et al.  Using multiple windows to track concept drift , 2004, Intell. Data Anal..

[56]  H. Mouss,et al.  Test of Page-Hinckley, an approach for fault detection in an agro-alimentary production system , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[57]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[58]  Leo Breiman,et al.  Pasting Small Votes for Classification in Large Databases and On-Line , 1999, Machine Learning.

[59]  Avrim Blum,et al.  Empirical Support for Winnow and Weighted-Majority Algorithms: Results on a Calendar Scheduling Domain , 2004, Machine Learning.

[60]  Marcos Salganicoff,et al.  Tolerating Concept and Sampling Shift in Lazy Learning Using Prediction Error Context Switching , 1997, Artificial Intelligence Review.

[61]  Ryszard S. Michalski,et al.  Selecting Examples for Partial Memory Learning , 2000, Machine Learning.

[62]  Ryszard S. Michalski,et al.  Incremental learning with partial instance memory , 2002, Artif. Intell..

[63]  Carlo Zaniolo,et al.  Fast and Light Boosting for Adaptive Mining of Data Streams , 2004, PAKDD.

[64]  John Bjørnar Bremnes,et al.  Probabilistic wind power forecasts using local quantile regression , 2004 .

[65]  Robert Givan,et al.  Online Ensemble Learning: An Empirical Study , 2000, Machine Learning.

[66]  JOHANNES GEHRKE,et al.  RainForest—A Framework for Fast Decision Tree Construction of Large Datasets , 1998, Data Mining and Knowledge Discovery.

[67]  Ludmila I. Kuncheva,et al.  Classifier Ensembles for Changing Environments , 2004, Multiple Classifier Systems.

[68]  Ralf Klinkenberg,et al.  Learning drifting concepts: Example selection vs. example weighting , 2004, Intell. Data Anal..

[69]  Gerhard Widmer,et al.  Tracking Context Changes through Meta-Learning , 1997, Machine Learning.

[70]  Lior Rokach,et al.  CHANGE DETECTION IN CLASSIFICATION MODELS INDUCED FROM TIME SERIES DATA , 2004 .

[71]  Shai Ben-David,et al.  Detecting Change in Data Streams , 2004, VLDB.

[72]  Marcus A. Maloof,et al.  Using additive expert ensembles to cope with concept drift , 2005, ICML.

[73]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[74]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[75]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[76]  Padraig Cunningham,et al.  A case-based technique for tracking concept drift in spam filtering , 2004, Knowl. Based Syst..

[77]  Charu C. Aggarwal,et al.  On change diagnosis in evolving data streams , 2005, IEEE Transactions on Knowledge and Data Engineering.

[78]  Paul G. Spirakis,et al.  Weighted random sampling with a reservoir , 2006, Inf. Process. Lett..

[79]  Anne-Marie Grisogono,et al.  The Implications of Complex Adaptive Systems Theory for C2 , 2006 .

[80]  Xindong Wu,et al.  Mining in Anticipation for Concept Change: Proactive-Reactive Prediction in Data Streams , 2006, Data Mining and Knowledge Discovery.

[81]  S. Venkatasubramanian,et al.  An Information-Theoretic Approach to Detecting Changes in Multi-Dimensional Data Streams , 2006 .

[82]  João Gama,et al.  Decision trees for mining data streams , 2006, Intell. Data Anal..

[83]  Mykola Pechenizkiy,et al.  Handling Local Concept Drift with Dynamic Integration of Classifiers: Domain of Antibiotic Resistance in Nosocomial Infections , 2006, 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06).

[84]  William W. Cohen,et al.  Single-pass online learning: performance, voting schemes and online feature selection , 2006, KDD '06.

[85]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[86]  Charu C. Aggarwal,et al.  On biased reservoir sampling in the presence of stream evolution , 2006, VLDB.

[87]  Ricard Gavaldà,et al.  Kalman Filters and Adaptive Windows for Learning in Data Streams , 2006, Discovery Science.

[88]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[89]  George Forman,et al.  Tackling concept drift by temporal inductive transfer , 2006, SIGIR.

[90]  Abraham Bernstein,et al.  Entropy-based Concept Shift Detection , 2006, Sixth International Conference on Data Mining (ICDM'06).

[91]  Ralf Klinkenberg,et al.  Boosting classifiers for drifting concepts , 2007, Intell. Data Anal..

[92]  João Gama,et al.  Change Detection in Learning Histograms from Data Streams , 2007, EPIA Workshops.

[93]  S. Muthukrishnan,et al.  Sequential Change Detection on Data Streams , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[94]  Xiaoyang Sean Wang,et al.  Adaptive-Size Reservoir Sampling over Data Streams , 2007, 19th International Conference on Scientific and Statistical Database Management (SSDBM 2007).

[95]  Philip S. Yu,et al.  A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions , 2007, SDM.

[96]  Ricard Gavaldà,et al.  Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.

[97]  Marcus A. Maloof,et al.  Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts , 2007, J. Mach. Learn. Res..

[98]  Koichiro Yamauchi,et al.  Detecting Concept Drift Using Statistical Testing , 2007, Discovery Science.

[99]  Vipin Kumar,et al.  Chapman & Hall/CRC Data Mining and Knowledge Discovery Series , 2008 .

[100]  Ludmila I. Kuncheva,et al.  Adaptive Learning Rate for Online Linear Discriminant Classifiers , 2008, SSPR/SPR.

[101]  Yong Shi,et al.  Categorizing and mining concept drifting data streams , 2008, KDD.

[102]  Ludmila I. Kuncheva,et al.  Classifier Ensembles for Detecting Concept Change in Streaming Data: Overview and Perspectives , 2008 .

[103]  Manoranjan Dash,et al.  A Test Paradigm for Detecting Changes in Transactional Data Streams , 2008, DASFAA.

[104]  Arno Siebes,et al.  StreamKrimp: Detecting Change in Data Streams , 2008, ECML/PKDD.

[105]  Marcus A. Maloof,et al.  Paired Learners for Concept Drift , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[106]  Jesús S. Aguilar-Ruiz,et al.  Knowledge discovery from data streams , 2009, Intell. Data Anal..

[107]  Anton Dries,et al.  Adaptive concept drift detection , 2009 .

[108]  A. Shiryaev On Stochastic Models and Optimal Methods in the Quickest Detection Problems , 2009 .

[109]  Albert Bifet,et al.  DATA STREAM MINING A Practical Approach , 2009 .

[110]  L. Kuncheva Using Control Charts for Detecting Concept Change in Streaming Data , 2009 .

[111]  Florin Rusu,et al.  Sketching Sampled Data Streams , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[112]  Vladimiro Miranda,et al.  Wind power forecasting : state-of-the-art 2009. , 2009 .

[113]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[114]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[115]  Geoff Holmes,et al.  New ensemble methods for evolving data streams , 2009, KDD.

[116]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[117]  Grigorios Tsoumakas,et al.  Tracking recurring contexts using ensemble classifiers: an application to email filtering , 2009, Knowledge and Information Systems.

[118]  Ludmila I. Kuncheva,et al.  Determining the Training Window for Small Sample Size Classification with Concept Drift , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[119]  Anton Dries,et al.  Adaptive concept drift detection , 2009, SDM.

[120]  V. Miranda,et al.  Entropy and Correntropy Against Minimum Square Error in Offline and Online Three-Day Ahead Wind Power Forecasting , 2009, IEEE Transactions on Power Systems.

[121]  Ludmila I. Kuncheva,et al.  On the window size for classification in changing environments , 2009, Intell. Data Anal..

[122]  Geoff Holmes,et al.  Fast Perceptron Decision Tree Learning from Evolving Data Streams , 2010, PAKDD.

[123]  Žliobait . e,et al.  Learning under Concept Drift: an Overview , 2010 .

[124]  Albert Bifet,et al.  GNUsmail: Open Framework for On-line Email Classification , 2010, ECAI.

[125]  Abdelhamid Bouchachia,et al.  Semi-supervised incremental learning , 2010, International Conference on Fuzzy Systems.

[126]  Y. Koren Collaborative filtering with temporal dynamics , 2010, CACM.

[127]  Mykola Pechenizkiy,et al.  Online mass flow prediction in CFB boilers with explicit detection of sudden concept drift , 2010, SKDD.

[128]  Xin Yao,et al.  The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift , 2010, IEEE Transactions on Knowledge and Data Engineering.

[129]  Marcus A. Maloof,et al.  The AQ Methods for Concept Drift , 2010, Advances in Machine Learning I.

[130]  Saso Dzeroski,et al.  Learning model trees from evolving data streams , 2010, Data Mining and Knowledge Discovery.

[131]  Brian Mac Namee,et al.  Handling Concept Drift in a Text Data Stream Constrained by High Labelling Cost , 2010, FLAIRS.

[132]  Jie Zhou,et al.  Transfer estimation of evolving class priors in data stream classification , 2010, Pattern Recognit..

[133]  Geoff Holmes,et al.  Leveraging Bagging for Evolving Data Streams , 2010, ECML/PKDD.

[134]  G. Moustakides,et al.  State-of-the-Art in Bayesian Changepoint Detection , 2010 .

[135]  Indre Zliobaite,et al.  Learning under Concept Drift: an Overview , 2010, ArXiv.

[136]  João Gama,et al.  Drift Severity Metric , 2010, ECAI.

[137]  Albert Bifet,et al.  Sentiment Knowledge Discovery in Twitter Streaming Data , 2010, Discovery Science.

[138]  João Gama,et al.  Learning about the Learning Process , 2011, IDA.

[139]  Thomas Seidl,et al.  MOA: A Real-Time Analytics Open Source Framework , 2011, ECML/PKDD.

[140]  Ernestina Menasalvas Ruiz,et al.  Learning recurring concepts from data streams with a context-aware ensemble , 2011, SAC.

[141]  Abdelhamid Bouchachia,et al.  Incremental learning with multi-level adaptation , 2011, Neurocomputing.

[142]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[143]  Bhavani M. Thuraisingham,et al.  Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints , 2011, IEEE Transactions on Knowledge and Data Engineering.

[144]  Rong Jin,et al.  Online AUC Maximization , 2011, ICML.

[145]  Abdelhamid Bouchachia,et al.  Fuzzy classification in dynamic environments , 2011, Soft Comput..

[146]  Indre Zliobaite,et al.  Controlled Permutations for Testing Adaptive Classifiers , 2011, Discovery Science.

[147]  Indre Zliobaite,et al.  Combining similarity in time and space for training set formation under concept drift , 2011, Intell. Data Anal..

[148]  Wil M. P. van der Aalst,et al.  Process Mining - Discovery, Conformance and Enhancement of Business Processes , 2011 .

[149]  Bogdan Gabrys,et al.  Review of adaptation mechanisms for data-driven soft sensors , 2011, Comput. Chem. Eng..

[150]  Robi Polikar,et al.  Incremental Learning of Concept Drift in Nonstationary Environments , 2011, IEEE Transactions on Neural Networks.

[151]  Philipp Hennig,et al.  Learning in Reality: A case study of Stanley, the robot that Won the DARPA Challenge , 2012 .

[152]  Abraham Kandel,et al.  Knowledge discovery in data streams with regression tree methods , 2012, WIREs Data Mining Knowl. Discov..

[153]  Xin Yao,et al.  DDD: A New Ensemble Approach for Dealing with Concept Drift , 2012, IEEE Transactions on Knowledge and Data Engineering.

[154]  Katarzyna Musial,et al.  Next challenges for adaptive learning systems , 2012, SKDD.

[155]  João Gama,et al.  On evaluating stream learning algorithms , 2012, Machine Learning.

[156]  Wil M. P. van der Aalst Process mining , 2012, CACM.

[157]  Francisco Herrera,et al.  A unifying view on dataset shift in classification , 2012, Pattern Recognit..

[158]  Mykola Pechenizkiy,et al.  Beating the baseline prediction in food sales: How intelligent an intelligent predictor is? , 2012, Expert Syst. Appl..

[159]  John Gantz,et al.  The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East , 2012 .

[160]  Yanning Zhang,et al.  Robust Tracking with Weighted Online Structured Learning , 2012, ECCV.

[161]  Josep Carmona,et al.  Online Techniques for Dealing with Concept Drift in Process Mining , 2012, IDA.

[162]  Dimitris K. Tasoulis,et al.  Exponentially weighted moving average charts for detecting concept drift , 2012, Pattern Recognit. Lett..

[163]  Ludmila I. Kuncheva,et al.  Change Detection in Streaming Multivariate Data Using Likelihood Detectors , 2013, IEEE Transactions on Knowledge and Data Engineering.

[164]  J. Bobadilla,et al.  Recommender systems survey , 2013, Knowl. Based Syst..

[165]  Michael R. Berthold,et al.  EVE: a framework for event detection , 2013, Evol. Syst..

[166]  Mykola Pechenizkiy,et al.  Predictive Handling of Asynchronous Concept Drifts in Distributed Environments , 2013, IEEE Transactions on Knowledge and Data Engineering.

[167]  Abdelhamid Bouchachia,et al.  GT2FC: An Online Growing Interval Type-2 Self-Learning Fuzzy Classifier , 2014, IEEE Transactions on Fuzzy Systems.

[168]  Geoff Holmes,et al.  Active Learning With Drifting Streaming Data , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[169]  Vladimiro Miranda,et al.  Very Short-Term Wind Power Forecasting: State-of-the-Art , 2014 .

[170]  Mykola Pechenizkiy,et al.  Dealing With Concept Drifts in Process Mining , 2014, IEEE Transactions on Neural Networks and Learning Systems.