Carbon Nanotubes--the Route Toward Applications

Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

[1]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[2]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[3]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[4]  Kenneth A. Smith,et al.  Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes , 1999 .

[5]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[6]  Sashiro Uemura,et al.  Field emission from carbon nanotubes and its application to electron sources , 1999 .

[7]  Otto Zhou,et al.  Application of carbon nanotubes as electrodes in gas discharge tubes , 2000 .

[8]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[9]  R. Huggins Solid State Ionics , 1989 .

[10]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[11]  László Forró,et al.  FIELD-EMISSION-INDUCED LUMINESCENCE FROM CARBON NANOTUBES , 1998 .

[12]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[13]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[14]  O. Zhou,et al.  Very large current density from carbon nanotube field emitters , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[15]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[16]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[17]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[18]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[19]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[20]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[21]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[22]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[23]  J. Sohn,et al.  Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays , 2001 .

[24]  Hongjie Dai,et al.  Patterned growth of single-walled carbon nanotubes on full 4-inch wafers , 2001 .

[25]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[26]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[27]  Philip Ball,et al.  Roll up for the revolution , 2001, Nature.

[28]  I. Lin,et al.  Field emission characteristics of carbon nanotube emitters synthesized by arc discharge , 2001 .

[29]  Naesung Lee,et al.  Application of carbon nanotubes to field emission displays , 2001 .

[30]  Catherine Zandonella,et al.  Is it all just a pipe dream? , 2001, Nature.

[31]  S. Louie Electronic Properties, Junctions, and Defects of Carbon Nanotubes , 2001 .

[32]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[33]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[34]  Otto Zhou,et al.  ELECTROCHEMICAL INTERCALATION OF SINGLE-WALLED CARBON NANOTUBES WITH LITHIUM , 1999 .

[35]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[36]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[37]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[38]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.

[39]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[40]  Michael J. Heben,et al.  Hydrogen storage using carbon adsorbents: past, present and future , 2001 .

[41]  Charles M. Lieber,et al.  Growth of nanotubes for probe microscopy tips , 1999, Nature.

[42]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[43]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[44]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[45]  M Kociak,et al.  Superconductivity in ropes of single-walled carbon nanotubes. , 2001, Physical review letters.

[46]  Zikang Tang,et al.  Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes , 2001, Science.

[47]  Michael A. Wilson,et al.  Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. , 2001, Journal of nanoscience and nanotechnology.

[48]  R. Baughman Putting a New Spin on Carbon Nanotubes , 2000, Science.

[49]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[50]  J. Gilman,et al.  Nanotechnology , 2001 .

[51]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[52]  H. Sugie,et al.  Carbon nanotubes as electron source in an x-ray tube , 2001 .

[53]  J. Tarascon,et al.  Unique effect of mechanical milling on the lithium intercalation properties of different carbons , 1997 .

[54]  X. Bai,et al.  Hydrogen storage in aligned carbon nanotubes , 2001 .

[55]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[56]  Jörg Fink,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[57]  P. Nordlander,et al.  Unraveling Nanotubes: Field Emission from an Atomic Wire , 1995, Science.

[58]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[59]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .