Abnormal mitochondrial function and morphology in heart transplanted patients with cardiac allograft vasculopathy.

[1]  E. Gnaiger Mitochondrial pathways and respiratory control: An Introduction to OXPHOS Analysis. 5th ed. , 2020 .

[2]  H. Bøtker,et al.  Effect of Blood Flow Restricted Resistance Exercise and Remote Ischemic Conditioning on Functional Capacity and Myocellular Adaptations in Patients With Heart Failure. , 2019, Circulation. Heart failure.

[3]  F. Dela,et al.  Mitochondrial reactive oxygen species generation in blood cells is associated with disease severity and exercise intolerance in heart failure patients , 2019, Scientific Reports.

[4]  C. Sucharov,et al.  Elamipretide Improves Mitochondrial Function in the Failing Human Heart , 2019, JACC. Basic to translational science.

[5]  D. Kelly,et al.  Mitochondrial Dysfunction in Heart Failure With Preserved Ejection Fraction , 2019, Circulation.

[6]  K. Nair,et al.  Mitochondrial Morphology, Dynamics, and Function in Human Pressure Overload or Ischemic Heart Disease With Preserved or Reduced Ejection Fraction , 2019, Circulation. Heart failure.

[7]  M. Roden,et al.  High-resolution respirometry in human endomyocardial biopsies shows reduced ventricular oxidative capacity related to heart failure , 2019, Experimental & Molecular Medicine.

[8]  S. Poulsen,et al.  Left ventricular global longitudinal strain predicts major adverse cardiac events and all-cause mortality in heart transplant patients. , 2017, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[9]  G. Filippatos,et al.  Mitochondrial function as a therapeutic target in heart failure , 2016, Nature Reviews Cardiology.

[10]  Krikor Dikranian,et al.  Mitochondrial structure and function are not different between nonfailing donor and end‐stage failing human hearts , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  Deepak L. Bhatt,et al.  Allograft Vasculopathy: The Achilles' Heel of Heart Transplantation. , 2016, Journal of the American College of Cardiology.

[12]  M. L. Lo Presti,et al.  Functional and structural alterations of cardiac and skeletal muscle mitochondria in heart failure patients. , 2014, Archives of medical research.

[13]  C. Gleissner,et al.  High‐sensitive Troponin T measurements early after heart transplantation predict short‐ and long‐term survival , 2013, Transplant international : official journal of the European Society for Organ Transplantation.

[14]  L. Køber,et al.  Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction , 2013, European journal of heart failure.

[15]  Y. Yoon,et al.  Mitochondrial morphology-emerging role in bioenergetics. , 2012, Free radical biology & medicine.

[16]  R. Boushel,et al.  Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects , 2012, The Journal of physiology.

[17]  Z. Meng,et al.  Trimetazidine: a meta-analysis of randomised controlled trials in heart failure , 2010, Heart.

[18]  R. Starling,et al.  International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. , 2010, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[19]  Michael S. Lee,et al.  Transplant coronary artery disease. , 2010, JACC. Cardiovascular interventions.

[20]  Stefan Neubauer,et al.  The failing heart--an engine out of fuel. , 2007, The New England journal of medicine.

[21]  G. Shore,et al.  Mitochondrial membrane dynamics, cristae remodelling and apoptosis. , 2006, Biochimica et biophysica acta.

[22]  William C Stanley,et al.  Myocardial substrate metabolism in the normal and failing heart. , 2005, Physiological reviews.

[23]  M. Mehra,et al.  Usefulness of an elevated B-type natriuretic peptide to predict allograft failure, cardiac allograft vasculopathy, and survival after heart transplantation. , 2004, The American journal of cardiology.

[24]  J. Wojta,et al.  Impaired VE-Cadherin/&bgr;-Catenin Expression Mediates Endothelial Cell Degeneration in Dilated Cardiomyopathy , 2003, Circulation.

[25]  H. Traxler,et al.  IMPACT OF CARDIAC TRANSPLANTATION ON MOLECULAR PATHOLOGY OF ET-1, VEGF-C, AND MITOCHONDRIAL METABOLISM AND MORPHOLOGY IN DILATED VERSUS ISCHEMIC CARDIOMYOPATHIC PATIENTS1 , 2001, Transplantation.

[26]  N. Silverman,et al.  Abnormal mitochondrial respiration in failed human myocardium. , 2000, Journal of molecular and cellular cardiology.

[27]  Ò. Miró,et al.  Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. , 2000, Cardiovascular research.

[28]  D. Green Apoptotic Pathways The Roads to Ruin , 1998, Cell.

[29]  R. Jennings,et al.  Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. , 1990, Circulation research.

[30]  E. Braunwald,et al.  Effect of propranolol on mitochondrial morphology during acute myocardial ischemia. , 1978, The American journal of cardiology.

[31]  H. Bøtker,et al.  Pre‐ischaemic mitochondrial substrate constraint by inhibition of malate‐aspartate shuttle preserves mitochondrial function after ischaemia–reperfusion , 2017, The Journal of physiology.

[32]  G. Kassab,et al.  Cardiac allograft vasculopathy: Microvascular arteriolar capillaries ('capioles") and survival. , 2017 .

[33]  T. Murohara,et al.  Usefulness of serum cardiac troponins T and I to predict cardiac molecular changes and cardiac damage in patients with hypertrophic cardiomyopathy. , 2013, International heart journal.