How do horizontal cells ‘talk’ to cone photoreceptors? Different levels of complexity at the cone–horizontal cell synapse

The first synapse of the retina plays a fundamental role in the visual system. Due to its importance, it is critical that it encodes information from the outside world with the greatest accuracy and precision possible. Cone photoreceptor axon terminals contain many individual synaptic sites, each represented by a presynaptic structure called a ‘ribbon’. These synapses are both highly sophisticated and conserved. Each ribbon relays the light signal to one ON cone bipolar cell and several OFF cone bipolar cells, while two dendritic processes from a GABAergic interneuron, the horizontal cell, modulate the cone output via parallel feedback mechanisms. The presence of these three partners within a single synapse has raised numerous questions, and its anatomical and functional complexity is still only partially understood. However, the understanding of this synapse has recently evolved, as a consequence of progress in understanding dendritic signal processing and its role in facilitating global versus local signalling. Indeed, for the downstream retinal network, dendritic processing in horizontal cells may be essential, as they must support important functional operations such as contrast enhancement, which requires spatial averaging of the photoreceptor array, while at the same time preserving accurate spatial information. Here, we review recent progress made towards a better understanding of the cone synapse, with an emphasis on horizontal cell function, and discuss why such complexity might be necessary for early visual processing.

[1]  Peter J. S. Smith,et al.  Modulation of Extracellular Proton Fluxes from Retinal Horizontal Cells of the Catfish by Depolarization and Glutamate , 2007, The Journal of general physiology.

[2]  S. Barnes,et al.  Calcium channels in rat horizontal cells regulate feedback inhibition of photoreceptors through an unconventional GABA‐ and pH‐sensitive mechanism , 2013, The Journal of physiology.

[3]  B. Boycott,et al.  Blue-Cone Horizontal Cells in the Retinae of Horses and OtherEquidae , 1996, The Journal of Neuroscience.

[4]  S. Wu,et al.  Possible roles of glutamate transporter EAAT5 in mouse cone depolarizing bipolar cell light responses , 2014, Vision Research.

[5]  J. Diamond,et al.  Retinal Parallel Processors: More than 100 Independent Microcircuits Operate within a Single Interneuron , 2010, Neuron.

[6]  H Spekreijse,et al.  The cone/horizontal cell network: A possible site for color constancy , 1998, Visual Neuroscience.

[7]  Thomas Euler,et al.  Two-Photon Imaging Reveals Somatodendritic Chloride Gradient in Retinal ON-Type Bipolar Cells Expressing the Biosensor Clomeleon , 2006, Neuron.

[8]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[9]  Wallace B. Thoreson,et al.  Lateral interactions in the outer retina , 2012, Progress in Retinal and Eye Research.

[10]  A. Kaneko,et al.  GABA-mediated component in the feedback response of turtle retinal cones , 2005, Visual Neuroscience.

[11]  G. Aguirre,et al.  Unique topographic separation of two spectral classes of cones in the mouse retina , 1992, The Journal of comparative neurology.

[12]  R. Weiler,et al.  A novel type of interplexiform amacrine cell in the mouse retina , 2009, The European journal of neuroscience.

[13]  Thomas Euler,et al.  Differential Regulation of Cone Calcium Signals by Different Horizontal Cell Feedback Mechanisms in the Mouse Retina , 2014, The Journal of Neuroscience.

[14]  Heinz Wässle,et al.  The Cone Pedicle, a Complex Synapse in the Retina , 2000, Neuron.

[15]  Timm Schubert,et al.  Rod and Cone Contributions to Horizontal Cell Light Responses in the Mouse Retina , 2008, The Journal of Neuroscience.

[16]  P. Sterling,et al.  Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA , 2000, The Journal of Neuroscience.

[17]  F. Esposti,et al.  A Synaptic Mechanism for Temporal Filtering of Visual Signals , 2014, PLoS biology.

[18]  Richard H. Kramer,et al.  Imaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina , 2014, Nature Neuroscience.

[19]  Shigang He,et al.  Lateral components in the cone terminals of the rabbit retina: Horizontal cell origin and glutamate receptor expression , 2006, The Journal of comparative neurology.

[20]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[21]  R. Weiler,et al.  Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina , 2000, The Journal of comparative neurology.

[22]  D. Otteson,et al.  Voltage-gated sodium channel alpha-subunits Na(v)1.1, Na(v)1.2, and Na(v)1.6 in the distal mammalian retina. , 2007, Molecular vision.

[23]  Thomas Euler,et al.  Spikes and ribbon synapses in early vision , 2013, Trends in Neurosciences.

[24]  Ryuichi Nakajima,et al.  Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators , 2016, Front. Synaptic Neurosci..

[25]  Philipp Berens,et al.  Connectivity map of bipolar cells and photoreceptors in the mouse retina , 2016, bioRxiv.

[26]  Charles P. Ratliff,et al.  Mechanism of High-Frequency Signaling at a Depressing Ribbon Synapse , 2016, Neuron.

[27]  Thomas Euler,et al.  OFF bipolar cells express distinct types of dendritic glutamate receptors in the mouse retina , 2013, Neuroscience.

[28]  R. Weiler,et al.  Cell-Specific Cre Recombinase Expression Allows Selective Ablation of Glutamate Receptors from Mouse Horizontal Cells , 2013, PloS one.

[29]  Timm Schubert,et al.  Horizontal cell receptive fields are reduced in connexin57‐deficient mice , 2006, The European journal of neuroscience.

[30]  S. M. Wu,et al.  Feedforward lateral inhibition in retinal bipolar cells: input-output relation of the horizontal cell-depolarizing bipolar cell synapse. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Kamermans,et al.  Pannexin1 in the outer retina of the zebrafish, Danio rerio , 2009, Neuroscience.

[32]  S. Massey,et al.  Three Distinct Blue-Green Color Pathways in a Mammalian Retina , 2014, The Journal of Neuroscience.

[33]  D. Tranchina,et al.  Kinetics of Inhibitory Feedback from Horizontal Cells to Photoreceptors: Implications for an Ephaptic Mechanism , 2016, The Journal of Neuroscience.

[34]  F. Rieke,et al.  Neurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells , 2015, Proceedings of the National Academy of Sciences.

[35]  James J. Chambers,et al.  A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors , 2011, PLoS biology.

[36]  Peter Sterling,et al.  Structure and function of ribbon synapses , 2005, Trends in Neurosciences.

[37]  R. Weiler,et al.  Effects of Nitric Oxide on the Horizontal Cell Network and Dopamine Release in the Carp Retina , 1997, Vision Research.

[38]  M. Kamermans,et al.  Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina , 2012, The Journal of physiology.

[39]  Stephen W Michnick,et al.  The connectivity map , 2006, Nature chemical biology.

[40]  J. L. Schnapf,et al.  Surround Antagonism in Macaque Cone Photoreceptors , 2003, Journal of Neuroscience.

[41]  Thomas A. Blanpied,et al.  A transsynaptic nanocolumn aligns neurotransmitter release to receptors , 2016, Nature.

[42]  R. Weiler,et al.  Intracellular calcium is regulated by different pathways in horizontal cells of the mouse retina. , 2005, Journal of neurophysiology.

[43]  R. Kramer,et al.  Light regulation of Ca2+ in the cone photoreceptor synaptic terminal , 2008, Visual Neuroscience.

[44]  R. Weiler,et al.  Expression of Pannexin1 in the outer plexiform layer of the mouse retina and physiological impact of its knockout , 2013, The Journal of comparative neurology.

[45]  C. Supuran,et al.  Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina , 2016, The Journal of physiology.

[46]  R. Weiler,et al.  Ether-à-gogo-related gene (erg1) potassium channels shape the dark response of horizontal cells in the mammalian retina , 2009, Pflügers Archiv - European Journal of Physiology.

[47]  R. Weiler,et al.  pH-gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  L. Peichl,et al.  Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.

[49]  Thomas Euler,et al.  A Tale of Two Retinal Domains: Near-Optimal Sampling of Achromatic Contrasts in Natural Scenes through Asymmetric Photoreceptor Distribution , 2013, Neuron.

[50]  J. Boulter,et al.  Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels123 , 2016, eNeuro.

[51]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[52]  Xin Jin,et al.  Modeling the pre- and post-synaptic components involved in the synaptic modification between cones and horizontal cells in carp retina , 2007, Biological Cybernetics.

[53]  R. Tsien,et al.  Molecular basis of proton block of L-type Ca2+ channels , 1996, The Journal of general physiology.

[54]  P. Sterling,et al.  Microcircuits for Night Vision in Mouse Retina , 2001, The Journal of Neuroscience.

[55]  A. Feigenspan,et al.  Functional properties of spontaneous excitatory currents and encoding of light/dark transitions in horizontal cells of the mouse retina , 2015, The European journal of neuroscience.

[56]  Paul Witkovsky,et al.  Dopamine and retinal function , 2004, Documenta Ophthalmologica.

[57]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[58]  W. Thoreson,et al.  Calcium-induced calcium release contributes to synaptic release from mouse rod photoreceptors , 2010, Neuroscience.

[59]  Maarten Kamermans,et al.  Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina , 2004, Current Opinion in Neurobiology.

[60]  R. Weiler,et al.  Selective synaptic distribution of AMPA and kainate receptor subunits in the outer plexiform layer of the carp retina , 2001, The Journal of comparative neurology.

[61]  W. Thoreson,et al.  Properties of Ribbon and Non-Ribbon Release from Rod Photoreceptors Revealed by Visualizing Individual Synaptic Vesicles , 2013, The Journal of Neuroscience.

[62]  S. Okabe,et al.  Insights into age-old questions of new dendritic spines: From form to function , 2017, Brain Research Bulletin.

[63]  S. Bloomfield,et al.  Dark‐ and light‐induced changes in coupling between horizontal cells in mammalian retina , 1999, The Journal of comparative neurology.

[64]  H Spekreijse,et al.  Color opponency in cone-driven horizontal cells in carp retina. Aspecific pathways between cones and horizontal cells , 1991, The Journal of general physiology.

[65]  H. Qian,et al.  Pharmacological characterization, localization, and regulation of ionotropic glutamate receptors in skate horizontal cells , 2009, Visual Neuroscience.

[66]  B. Roska,et al.  Rods in daylight act as relay cells for cone-driven horizontal cell–mediated surround inhibition , 2014, Nature Neuroscience.

[67]  Marvin N. Steijaert,et al.  Synaptic Transmission from Horizontal Cells to Cones Is Impaired by Loss of Connexin Hemichannels , 2011, PLoS biology.

[68]  W. Thoreson,et al.  Feedback from Horizontal Cells to Rod Photoreceptors in Vertebrate Retina , 2008, The Journal of Neuroscience.

[69]  G. Ratto,et al.  Twenty years of fluorescence imaging of intracellular chloride , 2014, Front. Cell. Neurosci..

[70]  S. DeVries,et al.  Exocytosed Protons Feedback to Suppress the Ca2+ Current in Mammalian Cone Photoreceptors , 2001, Neuron.

[71]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[72]  Timm Schubert,et al.  Functional expression of connexin57 in horizontal cells of the mouse retina , 2004, The European journal of neuroscience.

[73]  G. Fain Adaptation of Mammalian Photoreceptors to Background Light: Putative Role for Direct Modulation of Phosphodiesterase , 2011, Molecular Neurobiology.

[74]  D. A. Burkhardt The influence of center-surround antagonism on light adaptation in cones in the retina of the turtle , 1995, Visual Neuroscience.

[75]  J. L. Schnapf,et al.  Blue-Yellow Opponency in Primate S Cone Photoreceptors , 2010, The Journal of Neuroscience.

[76]  E. N. Pugh,et al.  Molecular mechanisms of vertebrate photoreceptor light adaptation , 1999, Current Opinion in Neurobiology.

[77]  R. Kramer,et al.  Release from the cone ribbon synapse under bright light conditions can be controlled by the opening of only a few Ca(2+) channels. , 2011, Journal of neurophysiology.

[78]  Thomas Euler,et al.  Retinal bipolar cells: elementary building blocks of vision , 2014, Nature Reviews Neuroscience.

[79]  J. L. Schnapf,et al.  Gap-Junctional Coupling and Absolute Sensitivity of Photoreceptors in Macaque Retina , 2005, The Journal of Neuroscience.

[80]  Lorenzo Cangiano,et al.  Mouse rods signal through gap junctions with cones , 2014, eLife.

[81]  C. M. Davenport,et al.  Lateral Inhibition in the Vertebrate Retina: The Case of the Missing Neurotransmitter , 2015, PLoS biology.

[82]  Maarten Kamermans,et al.  Lateral Gain Control in the Outer Retina Leads to Potentiation of Center Responses of Retinal Neurons , 2009, The Journal of Neuroscience.

[83]  Thomas Euler,et al.  Retinal Processing: Global Players Like It Local , 2010, Current Biology.

[84]  S. Haverkamp,et al.  ZO-1 and the Spatial Organization of Gap Junctions and Glutamate Receptors in the Outer Plexiform Layer of the Mammalian Retina , 2009, The Journal of Neuroscience.

[85]  Nicholas W. Oesch,et al.  Photoreceptor calcium channels: Insight from night blindness , 2005, Visual Neuroscience.

[86]  K. Lindsey,et al.  Extracellular ATP , 2009, Plant signaling & behavior.

[87]  M. Kamermans,et al.  Ephaptic communication in the vertebrate retina , 2013, Front. Hum. Neurosci..

[88]  K. Tornqvist,et al.  Modulation of cone horizontal cell activity in the teleost fish retina. III. Effects of prolonged darkness and dopamine on electrical coupling between horizontal cells , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  A. Goodchild,et al.  Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina , 1996, Visual Neuroscience.

[90]  K. Rábl,et al.  Location of release sites and calcium-activated chloride channels relative to calcium channels at the photoreceptor ribbon synapse. , 2011, Journal of neurophysiology.

[91]  M. Kamermans,et al.  Extracellular ATP Hydrolysis Inhibits Synaptic Transmission by Increasing pH Buffering in the Synaptic Cleft , 2014, PLoS biology.

[92]  Sharon Crook,et al.  Drift-diffusion simulation of the ephaptic effect in the triad synapse of the retina , 2015, Journal of Computational Neuroscience.

[93]  P. Sterling,et al.  Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina , 1994, Vision Research.

[94]  P. Lukasiewicz,et al.  Differential encoding of spatial information among retinal on cone bipolar cells. , 2015, Journal of neurophysiology.

[95]  Tobias Moser,et al.  Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells , 2009, Proceedings of the National Academy of Sciences.

[96]  Gerrit Hilgen,et al.  Connexin57 is expressed in dendro‐dendritic and axo‐axonal gap junctions of mouse horizontal cells and its distribution is modulated by light , 2009, The Journal of comparative neurology.

[97]  S. Haverkamp,et al.  Synaptic Elements for GABAergic Feed-Forward Signaling between HII Horizontal Cells and Blue Cone Bipolar Cells Are Enriched beneath Primate S-Cones , 2014, PloS one.

[98]  M Kamermans,et al.  GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  J. Lichtman,et al.  Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific. , 2008, Journal of neurophysiology.