A new non-intrusive technique for the construction of admissible stress fields in model verification

In this paper, we investigate a new procedure for constructing admissible stress tensors that are needed in some methods for robust global/goal-oriented error estimation. This procedure is based on properties of the approximate finite element solution which are applied through prolongation conditions. It involves the calculation of equilibrated tractions along element boundaries, leading to the determination of admissible stress tensors at the element level. The main idea of the proposed approach is to use the partition of unity method for the calculation of the equilibrated tractions, thus defining local problems on patches of elements which can be solved in an automatic and non-intrusive manner. Therefore, this hybrid procedure leads to reasonable computational costs and can be easily implemented into existing finite element codes. Two-dimensional experiments illustrate the capabilities of the method as compared to alternative approaches.

[1]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[2]  Pedro Díez,et al.  Subdomain-based flux-free a posteriori error estimators , 2006 .

[3]  P. Ladevèze,et al.  Model verification in dynamics through strict upper error bounds , 2009 .

[4]  Martin Kempeneers,et al.  Modèles équilibre pour l'analyse duale , 2003 .

[5]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[6]  Pierre Beckers,et al.  3-D error estimation and mesh adaptation using improved R.E.P. method , 1998 .

[7]  J. Tinsley Oden,et al.  Advances in adaptive computational methods in mechanics , 1998 .

[8]  Pierre Ladevèze,et al.  A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems , 2008 .

[9]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[10]  Pierre Ladevèze,et al.  Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM , 2010 .

[11]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[12]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[13]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[14]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[15]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .

[16]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[17]  M. Paraschivoiu,et al.  Adaptive computations of a posteriori finite element output bounds: a comparison of the “hybrid-flux” approach and the “flux-free” approach , 2004 .

[18]  Pierre Ladevèze,et al.  Local error estimators for finite element linear analysis , 1999 .

[19]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[20]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[21]  E. Ramm,et al.  Error-controlled Adaptive Finite Elements in Solid Mechanics , 2001 .

[22]  O. C. Holister,et al.  Stress Analysis , 1965 .

[23]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[24]  Pierre Ladevèze,et al.  New advances on a posteriori error on constitutive relation in f.e. analysis , 1997 .

[25]  Pierre Ladevèze,et al.  A general method for recovering equilibrating element tractions , 1996 .

[26]  Fabio Nobile,et al.  Analysis of a subdomain‐based error estimator for finite element approximations of elliptic problems , 2004 .

[27]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[28]  T. Strouboulis,et al.  A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor , 2000 .

[29]  Eric Florentin,et al.  Evaluation of the local quality of stresses in 3D finite element analysis , 2002 .

[30]  E. A. W. Maunder,et al.  Recovery of equilibrium on star patches using a partition of unity technique , 2009 .

[31]  Mark Ainsworth,et al.  A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .

[32]  Pierre Ladevèze,et al.  Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .

[33]  Anthony T. Patera,et al.  A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations , 2000 .

[34]  Pierre Ladevèze,et al.  Mastering Calculations in Linear and Nonlinear Mechanics , 2004 .

[35]  Anthony T. Patera,et al.  Bounds for Linear–Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement , 1998 .

[36]  Pedro Díez,et al.  Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method , 2009 .

[37]  J. P. Moitinho de Almeida,et al.  Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems , 2006 .

[38]  Pedro Díez,et al.  Guaranteed energy error bounds for the Poisson equation using a flux‐free approach: Solving the local problems in subdomains , 2009 .