A new non-intrusive technique for the construction of admissible stress fields in model verification
暂无分享,去创建一个
[1] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[2] Pedro Díez,et al. Subdomain-based flux-free a posteriori error estimators , 2006 .
[3] P. Ladevèze,et al. Model verification in dynamics through strict upper error bounds , 2009 .
[4] Martin Kempeneers,et al. Modèles équilibre pour l'analyse duale , 2003 .
[5] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[6] Pierre Beckers,et al. 3-D error estimation and mesh adaptation using improved R.E.P. method , 1998 .
[7] J. Tinsley Oden,et al. Advances in adaptive computational methods in mechanics , 1998 .
[8] Pierre Ladevèze,et al. A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems , 2008 .
[9] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[10] Pierre Ladevèze,et al. Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM , 2010 .
[11] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[12] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[13] B. D. Veubeke. Displacement and equilibrium models in the finite element method , 1965 .
[14] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[15] Ekkehard Ramm,et al. A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .
[16] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[17] M. Paraschivoiu,et al. Adaptive computations of a posteriori finite element output bounds: a comparison of the “hybrid-flux” approach and the “flux-free” approach , 2004 .
[18] Pierre Ladevèze,et al. Local error estimators for finite element linear analysis , 1999 .
[19] R. Rannacher,et al. A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .
[20] I. Babuska,et al. The finite element method and its reliability , 2001 .
[21] E. Ramm,et al. Error-controlled Adaptive Finite Elements in Solid Mechanics , 2001 .
[22] O. C. Holister,et al. Stress Analysis , 1965 .
[23] J. Peraire,et al. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .
[24] Pierre Ladevèze,et al. New advances on a posteriori error on constitutive relation in f.e. analysis , 1997 .
[25] Pierre Ladevèze,et al. A general method for recovering equilibrating element tractions , 1996 .
[26] Fabio Nobile,et al. Analysis of a subdomain‐based error estimator for finite element approximations of elliptic problems , 2004 .
[27] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[28] T. Strouboulis,et al. A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor , 2000 .
[29] Eric Florentin,et al. Evaluation of the local quality of stresses in 3D finite element analysis , 2002 .
[30] E. A. W. Maunder,et al. Recovery of equilibrium on star patches using a partition of unity technique , 2009 .
[31] Mark Ainsworth,et al. A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .
[32] Pierre Ladevèze,et al. Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .
[33] Anthony T. Patera,et al. A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations , 2000 .
[34] Pierre Ladevèze,et al. Mastering Calculations in Linear and Nonlinear Mechanics , 2004 .
[35] Anthony T. Patera,et al. Bounds for Linear–Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement , 1998 .
[36] Pedro Díez,et al. Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method , 2009 .
[37] J. P. Moitinho de Almeida,et al. Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems , 2006 .
[38] Pedro Díez,et al. Guaranteed energy error bounds for the Poisson equation using a flux‐free approach: Solving the local problems in subdomains , 2009 .