Half a Billion Simulations: Evolutionary Algorithms and Distributed Computing for Calibrating the Simpoplocal Geographical Model

Multiagent geographical models integrate very large numbers of spatial interactions. In order to validate these models a large amount of computing is necessary for their simulation and calibration. Here a new data-processing chain, including an automated calibration procedure, is tested on a computational grid using evolutionary algorithms. This is applied for the first time to a geographical model designed to simulate the evolution of an early urban settlement system. The method enables us to reduce the computing time and provides robust results. Using this method, we identify several parameter settings that minimize three objective functions that quantify how closely the model results match a reference pattern. As the values of each parameter in different settings are very close, this estimation considerably reduces the initial possible domain of variation of the parameters. Thus the model is a useful tool for further multiple applications in empirical historical situations.

[1]  Lena Sanders,et al.  REGARDS SCIENTIFIQUES CROISÉS SUR LA HIÉRARCHIE DES SYSTÈMES DE PEUPLEMENT: DE L’EMPIRIE AUX SYSTÈMES COMPLEXES , 2012 .

[2]  Walter Christaller Die zentralen Orte in Süddeutschland , 1980 .

[3]  W. Brian Arthur,et al.  The Nature of Technology: What it Is and How it Evolves , 2009 .

[4]  L. E. Leidy,et al.  Guns, germs and steel: The fates of human societies , 1999 .

[5]  Alison J. Heppenstall,et al.  Genetic Algorithm Optimisation of An Agent-Based Model for Simulating a Retail Market , 2007 .

[6]  Omar Baqueiro Espinosa A Genetic Algorithm for the Calibration of a Micro-Simulation Model , 2012, ArXiv.

[7]  L. Darrell Whitley,et al.  Island Model genetic Algorithms and Linearly Separable Problems , 1997, Evolutionary Computing, AISB Workshop.

[8]  Jeremy A. Sabloff,et al.  The ancient city : new perspectives on urbanism in the old and new world , 2009 .

[9]  Denise Pumain,et al.  The Future of Urban Systems: Exploratory Models , 2009 .

[10]  Jack P. C. Kleijnen,et al.  EUROPEAN JOURNAL OF OPERATIONAL , 1992 .

[11]  Tim Poston,et al.  Discontinuities in the Endogenous Change of Settlement Pattern , 1979 .

[12]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[13]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[14]  Colin Renfrew,et al.  Transformations: Mathematical Approaches to Culture Change. , 1980 .

[15]  B. Berry Cities as systems within systems of cities , 1964 .

[16]  P. Verhulst Recherches mathématiques sur la loi d’accroissement de la population , 1845, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles.

[17]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[18]  Forrest Stonedahl,et al.  Genetic algorithms for the exploration of parameter spaces in agent-based models , 2011 .

[19]  Li Liu,et al.  Settlement Patterns, Chiefdom Variability, and the Development of Early States in North China , 1996 .

[20]  Denise Pumain,et al.  Multiagent Systems and the Dynamics of a Settlement System , 2010 .

[21]  Sebastien Rey-Coyrehourcq,et al.  OpenMOLE, a workflow engine specifically tailored for the distributed exploration of simulation models , 2013, Future Gener. Comput. Syst..

[22]  David R. C. Hill,et al.  Declarative task delegation in OpenMOLE , 2010, 2010 International Conference on High Performance Computing & Simulation.

[23]  Denise Pumain,et al.  Theoretical Principles in Interurban Simulation Models: A Comparison , 2013 .

[24]  Hélène Mathian,et al.  SIMPOP: A Multiagent System for the Study of Urbanism , 1997 .

[25]  David Lane,et al.  Complexity perspectives in innovation and social change , 2009 .

[26]  Roland Fletcher,et al.  Settlement archaeology: World‐wide comparisons , 1986 .

[27]  Denise Pumain,et al.  Gibrat Revisited: An Urban Growth Model Incorporating Spatial Interaction and Innovation Cycles. 再评吉尔布瑞特:顾及空间相互作用和创新周期的城市增长模型 , 2011 .

[28]  R. Hinterding,et al.  Gaussian mutation and self-adaption for numeric genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[29]  William Rand,et al.  Evolving viral marketing strategies , 2010, GECCO '10.

[30]  Osman Balci,et al.  Verification, Validation, and Testing , 2007 .

[31]  D. Pumain,et al.  Simulating Urban Networks through Multiscalar Space-Time Dynamics: Europe and the United States, 17th-20th Centuries , 2010 .

[32]  Guillaume Hutzler,et al.  Automatic Tuning of Agent-Based Models Using Genetic Algorithms , 2005, MABS.

[33]  R. Lyndon While,et al.  Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[34]  Brian J. L. Berry,et al.  Cities as systems within systems of cities , 1964 .

[35]  Denise Pumain,et al.  From theory to modelling: urban systems as complex systems , 2006 .

[36]  Massimo Bernaschi,et al.  Optimization of HAART with genetic algorithms and agent-based models of HIV infection , 2007, Bioinform..

[37]  Vimal Sharma,et al.  Auto-Calibration of Hydrological Models Using High Performance Computing , 2006 .

[38]  Alan Wilson,et al.  A Family of Spatial Interaction Models, and Associated Developments , 1971 .

[39]  Forrest Stonedahl,et al.  Evolutionary Robustness Checking in the Artificial Anasazi Model , 2010, AAAI Fall Symposium: Complex Adaptive Systems.

[40]  Michael Batty,et al.  Fifty Years of Urban Modeling: Macro-Statics to Micro-Dynamics , 2008 .

[41]  Léna Sanders Objets géographiques et simulation agent, entre thématique et méthodologie , 2007, Rev. Int. Géomatique.

[42]  Philip A. Schrodt Historical Dynamics: Why States Rise and Fall , 2005 .

[43]  Raphaël Duboz,et al.  Application of an evolutionary algorithm to the inverse parameter estimation of an individual-based model , 2010 .

[44]  Li Liu,et al.  Settlement Patterns, Chiefdom Variability, and the Development of Early States in North China , 1996 .

[45]  Gregory A. Johnson Aspects of Regional Analysis in Archaeology , 1977 .

[46]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[47]  Andrew Crooks,et al.  Agent-based Models of Geographical Systems , 2012 .

[48]  Anders Johansson,et al.  The Dynamics of Complex Urban Systems , 2008 .

[49]  Paul Bairoch,et al.  De Jéricho à Mexico : villes et économie dans l'histoire , 1985 .

[50]  Hassan Abdulaziz,et al.  Environment and Planning , 1969 .

[51]  D. Solomatine,et al.  Automatic calibration of groundwater models using global optimization techniques , 1999 .

[52]  D. Pumain Multi-agent System Modelling for Urban Systems: The Series of SIMPOP Models , 2012 .

[53]  Michael Batty,et al.  Ucl Centre for Advanced Spatial Analysis Working Papers Series Key Challenges in Agent-based Modelling for Geo-spatial Simulation Paper 121 -sept 07 Key Challenges in Agent-based Modelling for Geo-spatial Simulation , 2022 .

[54]  Nicola Beume,et al.  Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces , 2005, 2005 IEEE Congress on Evolutionary Computation.

[55]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .