Quantum Control in the Unitary Sphere: Lambda-S1 and its Categorical Model

In a recent paper, a realizability technique has been used to give a semantics of a quantum lambda calculus. Such a technique gives rise to an infinite number of valid typing rules, without giving preference to any subset of those. In this paper, we introduce a valid subset of typing rules, defining an expressive enough quantum calculus. Then, we propose a categorical semantics for it. Such a semantics consists of an adjunction between the category of semi-vector spaces of value distributions (that is, linear combinations of values in the lambda calculus), and the category of sets of value distributions.

[1]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[2]  Gilles Dowek,et al.  Typing Quantum Superpositions and Measurement , 2016, TPNC.

[3]  Alexandre Miquel A Survey of Classical Realizability , 2011, TLCA.

[4]  Alejandro D'iaz-Caro,et al.  A fully abstract model for quantum controlled lambda calculus , 2018 .

[5]  Benoît Valiron,et al.  A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.

[6]  Simon Perdrix,et al.  Call-by-value, call-by-name and the vectorial behaviour of the algebraic λ-calculus , 2014, Log. Methods Comput. Sci..

[7]  Alejandro Díaz-Caro,et al.  A Categorical Construction for the Computational Definition of Vector Spaces , 2020, Appl. Categorical Struct..

[8]  Pablo Arrighi Linear-algebraic λ-calculus: higher-order, encodings, and confluence , 2006 .

[9]  Stephen Cole Kleene,et al.  On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.

[10]  Gilles Dowek,et al.  Two linearities for quantum computing in the lambda calculus , 2016, Biosyst..

[11]  Paul-André Melliès Categorical models of linear logic revisited , 2002 .

[12]  J. Krivine Realizability in classical logic , 2009 .

[13]  Aloïs Brunel The monitoring power of forcing transformations , 2014 .

[14]  Alejandro Díaz-Caro,et al.  A concrete categorical semantics of Lambda-S , 2018, LSFA.

[15]  Jennifer Paykin,et al.  QWIRE: a core language for quantum circuits , 2017, POPL.

[16]  Alexandre Miquel,et al.  Realizability in the Unitary Sphere , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[17]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[18]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.