Adaptive lag synchronization based topology identification scheme of uncertain general complex dynamical networks

This paper presents an adaptive lag synchronization based method for simultaneous identification of topology and parameters of uncertain general complex dynamical networks with and without time delays. Based on Lyapunov stability theorem and LaSalle’s invariance principle, an adaptive controller is designed to realize lag synchronization between drive and response systems, meanwhile, identification criteria of network topology and system parameters are obtained. Numerical simulations illustrate the effectiveness of the proposed method.

[1]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  G. Strang Introduction to Linear Algebra , 1993 .

[3]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[4]  Kestutis Pyragas SYNCHRONIZATION OF COUPLED TIME-DELAY SYSTEMS : ANALYTICAL ESTIMATIONS , 1998 .

[5]  C. Mirasso,et al.  Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. , 2001, Physical review letters.

[6]  S. Strogatz Exploring complex networks , 2001, Nature.

[7]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[8]  Ying Lu,et al.  Attraction of spiral waves by localized inhomogeneities with small-world connections in excitable media. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  R. Toral,et al.  Dynamical mechanism of anticipating synchronization in excitable systems. , 2004, Physical review letters.

[10]  S. Solla,et al.  Self-sustained activity in a small-world network of excitable neurons. , 2003, Physical review letters.

[11]  Ned J Corron,et al.  Lag and anticipating synchronization without time-delay coupling. , 2005, Chaos.

[12]  Ljupco Kocarev,et al.  Estimating topology of networks. , 2006, Physical review letters.

[13]  Debin Huang Adaptive-feedback control algorithm. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  A. Selverston,et al.  Dynamical principles in neuroscience , 2006 .

[15]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[16]  Marc Timme,et al.  Revealing network connectivity from response dynamics. , 2006, Physical review letters.

[17]  J. Kurths,et al.  Synchronization in Oscillatory Networks , 2007 .

[18]  Xiaoqun Wu Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay , 2008 .

[19]  Ulrich Parlitz,et al.  Driving a network to steady states reveals its cooperative architecture , 2008 .

[20]  C. K. Michael Tse,et al.  Adaptive Feedback Synchronization of a General Complex Dynamical Network With Delayed Nodes , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[21]  Junan Lu,et al.  Structure identification of uncertain general complex dynamical networks with time delay , 2009, Autom..

[22]  Wuneng Zhou,et al.  Adaptive lag synchronization and parameters adaptive lag identification of chaotic systems , 2010 .

[23]  Dongchuan Yu,et al.  Estimating the topology of complex dynamical networks by steady state control: Generality and limitation , 2010, Autom..

[24]  Zhisheng Duan,et al.  Adaptive lag synchronization in coupled chaotic systems with unidirectional delay feedback , 2010 .

[25]  Dibakar Ghosh,et al.  Lag and anticipatory synchronization based parameter estimation scheme in modulated time-delayed systems , 2010 .

[26]  Jiang Wang,et al.  Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control , 2010 .

[27]  Jinde Cao,et al.  Adaptive Lag Synchronization for Competitive Neural Networks With Mixed Delays and Uncertain Hybrid Perturbations , 2010, IEEE Transactions on Neural Networks.

[28]  U. Parlitz,et al.  Inferring Network Connectivity by Delayed Feedback Control , 2011, PloS one.

[29]  Quanxin Zhu,et al.  Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations , 2011 .

[30]  Hongtao Lu,et al.  Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters , 2011 .

[31]  Wanli Guo,et al.  Lag synchronization of complex networks via pinning control , 2011 .