Local Versus Global Properties of Metric Spaces Citation

Motivated by applications in combinatorial optimization, we study the extent to which the global properties of a metric space, and especially its embeddability into 1 with low distortion, are determined by the properties of its small subspaces. We establish both upper and lower bounds on the distortion of embedding locally constrained metrics into various target spaces. Other aspects of locally constrained metrics are studied as well, in particular, how far are those metrics from general metrics.

[1]  J. Matousek,et al.  Open problems on embeddings of finite metric spaces , 2014 .

[2]  Trish Groves,et al.  Cuts , 2010, BMJ : British Medical Journal.

[3]  Konstantinos Georgiou,et al.  Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities , 2008, IPCO.

[4]  Moses Charikar,et al.  Local Global Tradeoffs in Metric Embeddings , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[5]  Assaf Naor,et al.  Metric cotype , 2005, SODA '06.

[6]  Yuval Rabani,et al.  ON THE HARDNESS OF APPROXIMATING MULTICUT AND SPARSEST-CUT , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[7]  Sanjeev Arora,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[8]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[9]  Sampath Kannan,et al.  A robust model for finding optimal evolutionary trees , 1993, Algorithmica.

[10]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[11]  James R. Lee,et al.  Metric Structures in L1: Dimension, Snowflakes, and Average Distortion , 2004, LATIN.

[12]  Anupam Gupta,et al.  Cuts, Trees and ℓ1-Embeddings of Graphs* , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[13]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[14]  Nathan Linial,et al.  On metric ramsey-type phenomena , 2003, STOC '03.

[15]  Béla Bollobás,et al.  Proving integrality gaps without knowing the linear program , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[16]  Subhash Khot,et al.  On the power of unique 2-prover 1-round games , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[17]  Anupam Gupta,et al.  Embeddings of finite metrics , 2000 .

[18]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[19]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[20]  Ran Raz,et al.  Lower Bounds on the Distortion of Embedding Finite Metric Spaces in Graphs , 1998, Discret. Comput. Geom..

[21]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[22]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[23]  N. Fisher,et al.  Probability Inequalities for Sums of Bounded Random Variables , 1994 .

[24]  J. Matousek,et al.  Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces , 1992 .

[25]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[26]  David P. Dobkin,et al.  Generating Sparse Spanners for Weighted Graphs , 1990, SWAT.

[27]  H. Maehara,et al.  Metric transforms and Euclidean embeddings , 1990 .

[28]  R. C. James,et al.  Uniformly Non-Square Banach Spaces , 1964 .

[29]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .