A two-scale approach for the analysis of propagating three-dimensional fractures

This paper presents a generalized finite element method (GFEM) for crack growth simulations based on a two-scale decomposition of the solution—a smooth coarse-scale component and a singular fine-scale component. The smooth component is approximated by discretizations defined on coarse finite element meshes. The fine-scale component is approximated by the solution of local problems defined in neighborhoods of cracks. Boundary conditions for the local problems are provided by the available solution at a crack growth step. The methodology enables accurate modeling of 3-D propagating cracks on meshes with elements that are orders of magnitude larger than those required by the FEM. The coarse-scale mesh remains unchanged during the simulation. This, combined with the hierarchical nature of GFEM shape functions, allows the recycling of the factorization of the global stiffness matrix during a crack growth simulation. Numerical examples demonstrating the approximating properties of the proposed enrichment functions and the computational performance of the methodology are presented.

[1]  Stéphane Bordas,et al.  Enriched finite elements and level sets for damage tolerance assessment of complex structures , 2006 .

[2]  Hachmi Ben Dhia,et al.  On the use of XFEM within the Arlequin framework for the simulation of crack propagation , 2010 .

[3]  Julien Réthoré,et al.  Direct estimation of generalized stress intensity factors using a three‐scale concurrent multigrid X‐FEM , 2011 .

[4]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[5]  M. H. Aliabadi,et al.  THREE-DIMENSIONAL CRACK GROWTH SIMULATION USING BEM , 1994 .

[6]  P. C. Paris,et al.  The Stress Analysis of Cracks Handbook, Third Edition , 2000 .

[7]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[8]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .

[9]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[10]  Gerd Heber,et al.  Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear , 2005 .

[11]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[12]  Jacob Fish,et al.  On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems , 2008 .

[13]  D. Chopp,et al.  Extended finite element method and fast marching method for three-dimensional fatigue crack propagation , 2003 .

[14]  J. Tinsley Oden,et al.  An hp Adaptive Method Using Clouds C , 2006 .

[15]  Xiangmin Jiao,et al.  Three-dimensional crack growth with hp-generalized finite element and face offsetting methods , 2010 .

[16]  Johann Rannou,et al.  A local multigrid X‐FEM strategy for 3‐D crack propagation , 2009 .

[17]  Carlos Armando Duarte,et al.  Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients , 2009 .

[18]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[19]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[20]  Patrick Laborde,et al.  Spider XFEM, an extended finite element variant for partially unknown crack-tip displacement , 2008 .

[21]  G. Kullmer,et al.  A new criterion for the prediction of crack development in multiaxially loaded structures , 2002 .

[22]  Ivo Babuška,et al.  A Global-Local Approach for the Construction of Enrichment Functions for the Generalized FEM and Its Application to Three-Dimensional Cracks , 2007 .

[23]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[24]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[25]  I. Babuska,et al.  The generalized finite element method , 2001 .

[26]  C. Duarte,et al.  Analysis and applications of a generalized finite element method with global-local enrichment functions , 2008 .

[27]  I. Babuska,et al.  Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids , 2003 .

[28]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[29]  Dae-Jin Kim,et al.  Analysis of three‐dimensional fracture mechanics problems: A two‐scale approach using coarse‐generalized FEM meshes , 2010 .

[30]  Ted Belytschko,et al.  Combined extended and superimposed finite element method for cracks , 2004 .

[31]  Xiangmin Jiao,et al.  Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems , 2009 .

[32]  Jacob Fish,et al.  Adaptive and hierarchical modelling of fatigue crack propagation , 1993 .

[33]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[34]  Laurent Champaney,et al.  A multiscale extended finite element method for crack propagation , 2008 .

[35]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[36]  C. Duarte,et al.  Generalized finite element method with global-local enrichments for nonlinear fracture analysis , 2009 .

[37]  Hans Albert Richard,et al.  Theoretical crack path prediction , 2005 .

[38]  Ivo Babuška,et al.  p‐version of the generalized FEM using mesh‐based handbooks with applications to multiscale problems , 2004 .

[39]  Stéphane Bordas,et al.  Numerically determined enrichment functions for the extended finite element method and applications to bi‐material anisotropic fracture and polycrystals , 2010 .

[40]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[41]  Nahil Sobh,et al.  Parallel simulations of three-dimensional cracks using the generalized finite element method , 2011 .

[42]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[43]  Eitan Grinspun,et al.  Harmonic enrichment functions: A unified treatment of multiple, intersecting and branched cracks in the extended finite element method , 2010 .

[44]  Anthony Gravouil,et al.  A global model reduction approach for 3D fatigue crack growth with confined plasticity , 2011 .

[45]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[46]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[47]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[48]  Ted Belytschko,et al.  A multiscale projection method for macro/microcrack simulations , 2007 .

[49]  Marie-Christine Baietto,et al.  A two-scale extended finite element method for modelling 3D crack growth with interfacial contact , 2010 .

[50]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[51]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[52]  M. Rashid The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis , 1998 .

[53]  Carlos Armando Duarte,et al.  Transient analysis of sharp thermal gradients using coarse finite element meshes , 2011 .

[54]  R. Fan,et al.  The rs-method for material failure simulations , 2008 .

[55]  D. Chopp,et al.  Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .

[56]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[57]  M. H. Aliabadi,et al.  Three-dimensional thermo-mechanical fatigue crack growth using BEM , 2000 .

[58]  Xiangmin Jiao,et al.  Face offsetting: A unified approach for explicit moving interfaces , 2007, J. Comput. Phys..

[59]  Jacob Fish,et al.  The rs‐method for material failure simulations , 2008 .

[60]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[61]  Patrick Laborde,et al.  A Reduced Basis Enrichment for the eXtended Finite Element Method , 2009 .