Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua

[1]  A. Balankin,et al.  Formation factors for a class of deterministic models of pre-fractal pore-fracture networks , 2022, Chaos, Solitons & Fractals.

[2]  P. Agarwal,et al.  On a new generalized local fractal derivative operator , 2022, Chaos, Solitons & Fractals.

[3]  J. Bory‐Reyes,et al.  Fractional Moisil-Teodorescu operator in elasticity and electromagnetism , 2021, Alexandria Engineering Journal.

[4]  R. El-Nabulsi,et al.  A mapping from Schrodinger equation to Navier–Stokes equations through the product-like fractal geometry, fractal time derivative operator and variable thermal conductivity , 2021, Acta Mechanica.

[5]  A. Golmankhaneh,et al.  Equilibrium and non-equilibrium statistical mechanics with generalized fractal derivatives: A review , 2021 .

[6]  Alexander S. Balankin,et al.  Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems , 2020 .

[7]  Junru Wu,et al.  FRACTAL STOKES’ THEOREM BASED ON INTEGRALS ON FRACTAL MANIFOLDS , 2020 .

[8]  R. El-Nabulsi Fractional Navier–Stokes Equation from Fractional Velocity Arguments and Its Implications in Fluid Flows and Microfilaments , 2019, International Journal of Nonlinear Sciences and Numerical Simulation.

[9]  R. El-Nabulsi Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations , 2019, Journal of Physics and Chemistry of Solids.

[10]  Q. Naqvi,et al.  Electromagnetic behavior of a planar interface of non-integer dimensional dielectric-chiral mediums , 2019, Optik.

[11]  A. Golmankhaneh,et al.  Fractal Calculus of Functions on Cantor Tartan Spaces , 2018, Fractal and Fractional.

[12]  Miguel Patiño-Ortiz,et al.  Noteworthy fractal features and transport properties of Cantor tartans , 2018, Physics Letters A.

[13]  Lay Kee Ang,et al.  Thickness Dependence of Space-Charge-Limited Current in Spatially Disordered Organic Semiconductors , 2018, IEEE Transactions on Electron Devices.

[14]  Wanderson Rosa,et al.  Dual conformable derivative: Definition, simple properties and perspectives for applications , 2018, Chaos, Solitons & Fractals.

[15]  Alireza Khalili Golmankhaneh,et al.  Sub- and super-diffusion on Cantor sets: Beyond the paradox , 2018 .

[16]  Alexander S. Balankin,et al.  Mapping physical problems on fractals onto boundary value problems within continuum framework , 2018 .

[17]  Wen Chen,et al.  Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations , 2017 .

[18]  Alexander S. Balankin,et al.  The topological Hausdorff dimension and transport properties of Sierpiński carpets , 2017 .

[19]  Alexander S. Balankin,et al.  Topological Hausdorff dimension and geodesic metric of critical percolation cluster in two dimensions , 2017 .

[20]  Yingjie Liang,et al.  New methodologies in fractional and fractal derivatives modeling , 2017 .

[21]  Wen Chen,et al.  Generalized Maxwell Relations in Thermodynamics with Metric Derivatives , 2017, Entropy.

[22]  Qaisar Abbas Naqvi,et al.  Electromagnetic behavior of a planar interface of non-integer dimensional spaces , 2017 .

[23]  Alexander S. Balankin,et al.  Steady laminar flow of fractal fluids , 2017 .

[24]  A. Teplyaev,et al.  Regularized Laplacian determinants of self-similar fractals , 2016, Letters in Mathematical Physics.

[25]  Alexander S. Balankin,et al.  Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity , 2016 .

[26]  Lay Kee Ang,et al.  Coordinate System Invariant Formulation of Fractional‐Dimensional Child‐Langmuir Law for a Rough Cathode , 2016, Advanced Physics Research.

[27]  M. Belić,et al.  Spatiotemporal accessible solitons in fractional dimensions. , 2016, Physical review. E.

[28]  J. Helayel-Neto,et al.  Axiomatic Local Metric Derivatives for Low-Level Fractionality with Mittag-Leffler Eigenfunctions , 2016, 1605.08097.

[29]  Q. Naqvi,et al.  On cylindrical model of electrostatic potential in fractional dimensional space , 2016 .

[30]  M. Shapiro,et al.  Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric , 2016 .

[31]  A. Balankin,et al.  Effective degrees of freedom of a random walk on a fractal. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Jos'e Weberszpil,et al.  Variational approach and deformed derivatives , 2015, 1511.02835.

[33]  V. E. Tarasov Fractal electrodynamics via non-integer dimensional space approach , 2015 .

[34]  D. Anderson,et al.  Properties of the Katugampola fractional derivative with potential application in quantum mechanics , 2015 .

[35]  Charles Tresser,et al.  Fractals as objects with nontrivial structures at all scales , 2015 .

[36]  Alexander S. Balankin,et al.  A continuum framework for mechanics of fractal materials II: elastic stress fields ahead of cracks in a fractal medium , 2015 .

[37]  Alexander S. Balankin,et al.  A continuum framework for mechanics of fractal materials I: from fractional space to continuum with fractal metric , 2015 .

[38]  A. Balankin,et al.  Edwards's statistical mechanics of crumpling networks in crushed self-avoiding sheets with finite bending rigidity. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  M. J. Lazo,et al.  On a connection between a class of q-deformed algebras and the Hausdorff derivative in a medium with fractal metric , 2015, 1502.07606.

[40]  Vasily E. Tarasov,et al.  Vector calculus in non-integer dimensional space and its applications to fractal media , 2015, Commun. Nonlinear Sci. Numer. Simul..

[41]  V. E. Tarasov Anisotropic fractal media by vector calculus in non-integer dimensional space , 2014, 1503.02392.

[42]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..

[43]  Xiao‐Jun Yang,et al.  Maxwell’s Equations on Cantor Sets: A Local Fractional Approach , 2013 .

[44]  Alexander S. Balankin,et al.  Stresses and strains in a deformable fractal medium and in its fractal continuum model , 2013 .

[45]  D. Baleanu,et al.  On a new measure on fractals , 2013, Journal of Inequalities and Applications.

[46]  Alexander S. Balankin,et al.  Physics in space–time with scale-dependent metrics , 2013 .

[47]  A. Balankin,et al.  Electromagnetic fields in fractal continua , 2013 .

[48]  C. L. Martínez-González,et al.  Random walk in chemical space of Cantor dust as a paradigm of superdiffusion. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Michael Hinz,et al.  Vector analysis on fractals and applications , 2012, 1207.6375.

[50]  Peter Grabner,et al.  Laplace operators on fractals and related functional equations , 2012, 1206.1211.

[51]  A. Balankin,et al.  Map of fluid flow in fractal porous medium into fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  A. Balankin,et al.  Hydrodynamics of fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  A. D. Gangal,et al.  CALCULUS ON FRACTAL SUBSETS OF REAL LINE — II: CONJUGACY WITH ORDINARY CALCULUS , 2011 .

[54]  Qaisar Abbas Naqvi,et al.  On electromagnetic wave propagation in fractional space , 2011 .

[55]  Gianluca Calcagni,et al.  Fractional and noncommutative spacetimes , 2011, 1107.5308.

[56]  F. Borodich,et al.  Scaling of mathematical fractals and box-counting quasi-measure , 2010 .

[57]  D. Baleanu,et al.  On electromagnetic field in fractional space , 2010 .

[58]  O. Agrawal,et al.  A scaling method and its applications to problems in fractional dimensional space , 2009 .

[59]  El-nabulsi Ahmad Rami,et al.  Fractional illusion theory of space: Fractional gravitational field with fractional extra-dimensions , 2009 .

[60]  M. Ostoja-Starzewski Continuum mechanics models of fractal porous media: Integral relations and extremum principles , 2009 .

[61]  M. Ostoja-Starzewski,et al.  Fractal solids, product measures and fractional wave equations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  Seema Satin,et al.  CALCULUS ON FRACTAL CURVES IN Rn , 2009, 0906.0676.

[63]  J. Bory‐Reyes,et al.  Laplacian decomposition of vector fields on fractal surfaces , 2008, Journal of Mathematical Analysis and Applications.

[64]  A. Teplyaev Harmonic Coordinates on Fractals with Finitely Ramified Cell Structure , 2005, Canadian Journal of Mathematics.

[65]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[66]  Paul N. Stavrinou,et al.  Equations of motion in a non-integer-dimensional space , 2004 .

[67]  A. D. Gangal,et al.  Calculus on fractal subsets of real line - I: formulation , 2003, math-ph/0310047.

[68]  Ernesto P. Borges A possible deformed algebra and calculus inspired in nonextensive thermostatistics , 2003, cond-mat/0304545.

[69]  E. Vrscay,et al.  Fractal vector measures and vector calculus on planar fractal domains , 2002 .

[70]  Marek Rybaczuk,et al.  The concept of physical and fractal dimension II. The differential calculus in dimensional spaces , 2001 .

[71]  Alexander Teplyaev,et al.  Gradients on Fractals , 2000 .

[72]  F. Borodich,et al.  Surface integrals for domains with fractal boundaries and some applications to elasticity , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[73]  Jenny Harrison,et al.  Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes' theorems , 1999 .

[74]  Jean-Pierre Eckmann,et al.  Q-ANALYSIS OF FRACTAL SETS , 1997 .

[75]  Kiran M. Kolwankar,et al.  Fractional differentiability of nowhere differentiable functions and dimensions. , 1996, Chaos.

[76]  R. Coquereaux Non-commutative geometry: A physicist's brief survey , 1993 .

[77]  He Excitons in anisotropic solids: The model of fractional-dimensional space. , 1991, Physical review. B, Condensed matter.

[78]  D. D. Sokolov,et al.  Fractals, similarity, intermediate asymptotics , 1985 .

[79]  Frank H. Stillinger,et al.  Axiomatic basis for spaces with noninteger dimension , 1977 .

[80]  Wen Chen,et al.  Three-dimensional Hausdorff derivative diffusion model for isotropic/anisotropic fractal porous media , 2017 .

[81]  A. Balankin,et al.  Stress concentration and size effect in fracture of notched heterogeneous material. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  D. Baleanu,et al.  MANDELBROT SCALING AND PARAMETRIZATION INVARIANT THEORIES , 2010 .

[83]  Eric S. Mbakop Analysis on Fractals , 2009 .