Semantic Tableaux with Equality

This paper tries to identify the basic problems encountered in handling equality in the semantic tableau framework, and to describe the state of the art in solving these problems. The two main paradigms for handling equality are compared: adding new tableau expansion rules and using E-unification algorithms.

[1]  R. Smullyan First-Order Logic , 1968 .

[2]  Daniel Brand,et al.  Proving Theorems with the Modification Method , 1975, SIAM J. Comput..

[3]  Robert E. Shostak,et al.  An algorithm for reasoning about equality , 1977, CACM.

[4]  Greg Nelson,et al.  Fast Decision Procedures Based on Congruence Closure , 1980, JACM.

[5]  R. Jeffrey Formal Logic: Its Scope and Limits , 1981 .

[6]  L. Wos,et al.  Paramodulation and Theorem-Proving in First-Order Theories with Equality , 1983 .

[7]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[8]  Jörg H. Siekmann Universal Unification , 1984, CADE.

[9]  Malcolm C. Harrison,et al.  Equality-based binary resolution , 1986, JACM.

[10]  Werner Nutt,et al.  Basic Narrowing Revisited , 1989, J. Symb. Comput..

[11]  L. Bachmair,et al.  Completion without Failure 1 , 1989 .

[12]  Bernhard Beckert,et al.  The Tableau-Based Theorem Prover 3TAP for Multi-Valued Logics , 1992, CADE.

[13]  Bernhard Beckert,et al.  The Tableau – Based Theorem Prover 3 T AP for Multiple – Valued Logics ∗ , 1992 .

[14]  Bernhard Beckert,et al.  An Improved Method for Adding Equality to Free Variable Semantic Tableaux , 1992, CADE.

[15]  Paliath Narendran,et al.  Theorem proving using equational matings and rigid E-unification , 1992, JACM.

[16]  Bernhard Beckert,et al.  The Even More Liberalized delta-Rule in Free Variable Semantic Tableaux , 1993, Kurt Gödel Colloquium.

[17]  Uwe Petermann,et al.  Rigid Unification by Completion and Rigid Paramodulation , 1994, KI.

[18]  Bernhard Beckert,et al.  A Completion-Based Method for Mixed Universal and Rigid E-Unification , 1994, CADE.

[19]  Christian G. Fermüller,et al.  Non-elementary Speedups between Different Versions of Tableaux , 1995, TABLEAUX.

[20]  Andrei Voronkov,et al.  Simultaneous Regid E-Unification Is Undecidable , 1995, CSL.

[21]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.