Activity detection with dendrite threshold model

This paper presents an activity detection system using dendrite threshold logic neuron models. This method generates a dendrite weight matrix from the background image and detect the changes in the subsequent images through the trained neuron outputs. Using only one layer of dendrite neuron cells with simplistic threshold logic cells, an accuracy of 98% is reported in realistic imaging conditions. The real-time implementation of the system is done using OpenCV libraries to be deployed in raspberry pi platform.