Spectroscopy and imaging of arrays of nanorods toward nanopolarimetry

The polarization dependence of the optical scattering properties of two-dimensional arrays of metal nanostructures with sub-wavelength dimensions (nanoantennas) has been investigated. Arrays of 500 nm × 100 nm gold nanorods covering a 100 × 100 µm(2) area were fabricated with varying orientations on an electrically conductive substrate. The experimental and computational analysis of the angularly organized nanorods suggest potential use toward the development of an integrated polarimeter. Using the gold nanorods on a transparent substrate as a preliminary system, we show that in the proper spectral range the scattering properties of the structures may be tuned for such an application.

[1]  Tsuyoshi Nomura,et al.  Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes , 2011 .

[2]  P. Santiago,et al.  New preparation method of gold nanoparticles on SiO2. , 2006, The journal of physical chemistry. B.

[3]  Tian Ming,et al.  Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. , 2009, Nano letters.

[4]  S. Brasselet,et al.  Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[5]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[6]  Peter Nordlander,et al.  Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.

[7]  Andrea Alù,et al.  Wireless at the nanoscale: optical interconnects using matched nanoantennas. , 2010, Physical review letters.

[8]  E. Coronado,et al.  Plasmon Coupling in Silver Nanosphere Pairs , 2010 .

[9]  B. MacCraith,et al.  Optical Properties of Micro-patterned Silver Nanoparticle Substrates , 2009, Journal of Fluorescence.

[10]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[11]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[12]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[13]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[14]  A Passian,et al.  Modulation of multiple photon energies by use of surface plasmons. , 2005, Optics letters.

[15]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[16]  O. Martin,et al.  Polarization sensitivity of optical resonant dipole antennas , 2008 .

[17]  Michael Siegel,et al.  Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties , 2009, Nanotechnology.

[18]  Aurélien Bruyant,et al.  Gain, detuning, and radiation patterns of nanoparticle optical antennas , 2008 .

[19]  T. Thundat,et al.  Thermoplasmonic shift and dispersion in thin metal films , 2008 .

[20]  Federico Capasso,et al.  Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. , 2009, Nano letters.

[21]  E. Dujardin,et al.  Near-field optical properties of top-down and bottom-up nanostructures , 2006 .

[22]  J. P. Goudonnet,et al.  Optical modulation processes in thin films based on thermal effects of surface plasmons , 2005 .

[23]  Georgios Veronis,et al.  Slow-light enhanced absorption switches in metal-dielectric-metal plasmonic waveguides , 2009, CLEO: 2011 - Laser Science to Photonic Applications.

[24]  Philip S Low,et al.  In vitro and in vivo two-photon luminescence imaging of single gold nanorods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Min,et al.  All-Optical Absorption Switches in Subwavelength Metal-Dielectric-Metal Plasmonic Waveguides , 2009 .

[26]  Petru Ghenuche,et al.  Cumulative plasmon field enhancement in finite metal particle chains. , 2005, Optics letters.

[27]  J. Sader,et al.  Coherent Excitation of Vibrational Modes in Gold Nanorods , 2002 .

[28]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[29]  G. von Plessen,et al.  Radiation damping in metal nanoparticle pairs. , 2007, Nano letters.

[30]  Romain Quidant,et al.  Optical sensing based on plasmon coupling in nanoparticle arrays. , 2004, Optics express.

[31]  Hiromi Okamoto,et al.  Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites. , 2006, Nano letters.

[32]  Jean-Jacques Greffet,et al.  Nanoantennas for Light Emission , 2005, Science.

[33]  C. Foss,et al.  Visible Region Polarization Spectroscopic Studies of Template-Synthesized Gold Nanoparticles Oriented in Polyethylene , 1998 .

[34]  Shinji Okazaki,et al.  Pushing the limits of lithography , 2000, Nature.

[35]  Paul Mulvaney,et al.  Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging , 2006 .

[36]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[37]  K. Sokolov,et al.  Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. , 2007, Nano letters.

[38]  N. V. van Hulst,et al.  Individual gold dimers investigated by far‐ and near‐field imaging , 2008, Journal of microscopy.

[39]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[40]  Marc Lamy de la Chapelle,et al.  Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method , 2005 .

[41]  A. L. Lereua Thermoplasmonic shift and dispersion in thin metal films , 2008 .

[42]  C. Girard Near fields in nanostructures , 2005 .

[43]  N. Rotenberg,et al.  Ultrafast Active Plasmonics on Gold Films , 2011 .

[44]  J. Kottmann,et al.  Plasmon resonant coupling in metallic nanowires. , 2001, Optics express.

[45]  Weian Zhao,et al.  Tumour targeting: Nanoantennas heat up. , 2009, Nature materials.

[46]  Pavel Zemánek,et al.  Colloquium: Gripped by light: Optical binding , 2010 .

[47]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[48]  L. Novotný,et al.  Antennas for light , 2011 .

[49]  General study of displacements at total reflection , 1977 .

[50]  M. Garcia-Parajo,et al.  Probing the local field of nanoantennas using single particle luminescence , 2008 .

[51]  Jacques A. Delaire,et al.  Optical Limitation induced by Gold Clusters. 1. Size Effect , 2000 .

[52]  Kort Travis,et al.  Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling. , 2009, Nano letters.

[53]  Thomas Thundat,et al.  Curvature effects in surface plasmon dispersion and coupling , 2005 .

[54]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[55]  Alasdair W. Clark,et al.  Multiple plasmon resonances from gold nanostructures , 2007 .

[56]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[57]  Hideki T. Miyazaki,et al.  Resonant light scattering from individual Ag nanoparticles and particle pairs , 2002 .

[58]  Bert Hecht,et al.  Impedance matching and emission properties of nanoantennas in an optical nanocircuit. , 2009, Nano letters.

[59]  Hao Ming Chen,et al.  Controlling the length and shape of gold nanorods. , 2005, The journal of physical chemistry. B.

[60]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[61]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[62]  Cheng-Yang Liu,et al.  Polarized angular dependence of out-of-plane light-scattering measurements for nanoparticles on wafer , 2009 .

[63]  Surface‐polariton propagation for scanning near‐field optical microscopy application , 1999, Journal of microscopy.

[64]  Pei Wang,et al.  All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. , 2008, Optics letters.

[65]  Younan Xia,et al.  Synthesis and optical properties of silver nanobars and nanorice. , 2007, Nano letters.

[66]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[67]  Pascal Royer,et al.  External control of the scattering properties of a single optical nanoantenna , 2010 .

[68]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[69]  S. Brasselet,et al.  Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry , 2010 .

[70]  L. Hesselink,et al.  Fractal extensions of near-field aperture shapes for enhanced transmission and resolution. , 2005, Optics express.

[71]  A. Lereu Modulation: Plasmons lend a helping hand , 2007 .

[72]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[73]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[74]  Shuang Zhang,et al.  Optical negative index metamaterials with improved performance , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.