Power Laws in Biological Networks

The rapidly developing theory of complex networks indicates that real networks are not random, but have a highly robust large-scale architecture, governed by strict organizational principles. Here, we focus on the properties of biological networks, discussing their scale-free and hierarchical features. We illustrate the major network characteristics using examples from the metabolic network of the bacterium Escherichia coli. We also discuss the principles of network utilization, acknowledging that the interactions in a real network have unequal strengths. We study the interplay between topology and reaction fluxes provided by flux-balance analysis. We find that the cellular utilization of the metabolic network is both globally and locally highly inhomogeneous, dominated by “hot-spots”, rep-resenting connected high-flux pathways.

[1]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[2]  G. Church,et al.  Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae , 2001, Nature Genetics.

[3]  S. Fields,et al.  Genome-wide analysis of vaccinia virus protein-protein interactions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[4]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[5]  A. Grigoriev A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. , 2001, Nucleic acids research.

[6]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[7]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[8]  P. Anderson More is different. , 1972, Science.

[9]  M. Mann,et al.  Proteomics to study genes and genomes , 2000, Nature.

[10]  J. Montoya,et al.  Small world patterns in food webs. , 2002, Journal of theoretical biology.

[11]  M. Gerstein,et al.  Relating whole-genome expression data with protein-protein interactions. , 2002, Genome research.

[12]  Petter Holme,et al.  Subnetwork hierarchies of biochemical pathways , 2002, Bioinform..

[13]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[14]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[15]  P. R. ten Wolde,et al.  Statistical analysis of the spatial distribution of operons in the transcriptional regulation network of Escherichia coli. , 2003, Journal of molecular biology.

[16]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Bernard Derrida,et al.  Statistical properties of randomly broken objects and of multivalley structures in disordered systems , 1987 .

[18]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[19]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[21]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[22]  T. Liesegang The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Caron H, ∗ van Schaik B, van der Mee M, et al. Science 2001;291:1289–1292. , 2001 .

[23]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[24]  U. Sauer,et al.  Metabolic Flux Responses to Pyruvate Kinase Knockout in Escherichia coli , 2002, Journal of bacteriology.

[25]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[26]  S. Strogatz Exploring complex networks , 2001, Nature.

[27]  A. Barabasi,et al.  Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. , 2003, Genome research.

[28]  C. Rao,et al.  Control motifs for intracellular regulatory networks. , 2001, Annual review of biomedical engineering.

[29]  P. Legrain,et al.  A genomic approach of the hepatitis C virus generates a protein interaction map. , 2000, Gene.

[30]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[31]  A. Barabasi,et al.  The topology of the transcription regulatory network in the yeast , 2002, cond-mat/0205181.

[32]  C. Burge,et al.  Chipping away at the transcriptome , 2001, Nature Genetics.

[33]  Neal S. Holter,et al.  Dynamic modeling of gene expression data. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[35]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  F. Baas,et al.  The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains , 2001, Science.

[37]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[38]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[40]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[41]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Hawoong Jeong,et al.  Classification of scale-free networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  B. Bollobás The evolution of random graphs , 1984 .

[44]  V. Kuznetsov,et al.  General statistics of stochastic process of gene expression in eukaryotic cells. , 2002, Genetics.

[45]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[47]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[48]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[49]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[50]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[51]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[53]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[54]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[55]  Farren J. Isaacs,et al.  Computational studies of gene regulatory networks: in numero molecular biology , 2001, Nature Reviews Genetics.

[56]  B. Palsson,et al.  Characterizing the metabolic phenotype: A phenotype phase plane analysis , 2002, Biotechnology and bioengineering.

[57]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. A. de Menezes,et al.  Fluctuations in network dynamics. , 2004, Physical review letters.

[59]  Xerox,et al.  The Small World , 1999 .

[60]  C. Lee Giles,et al.  Accessibility of information on the web , 1999, Nature.

[61]  K-I Goh,et al.  Fluctuation-driven dynamics of the internet topology. , 2002, Physical review letters.

[62]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.

[63]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[64]  Marc Barthelemy,et al.  Spatial structure of the internet traffic , 2003 .

[65]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[66]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[68]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[69]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[70]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.