A real-time algorithm for moving horizon state and parameter estimation

Abstract A moving horizon estimation (MHE) approach to simultaneously estimate states and parameters is revisited. Two different noise models are considered, one with measurement noise and one with additional state noise. The contribution of this article is twofold. First, we transfer the real-time iteration approach, developed in Diehl et al. (2002) for nonlinear model predictive control, to the MHE approach to render it real-time feasible. The scheme reduces the computational burden to one iteration per measurement sample and separates each iteration into a preparation and an estimation phase. This drastically reduces the time between measurements and computed estimates. Secondly, we derive a numerically efficient arrival cost update scheme based on one single QR-factorization. The MHE algorithm is demonstrated on two chemical engineering problems, a thermally coupled distillation column and the Tennessee Eastman benchmark problem, and compared against an Extended Kalman Filter. The CPU times demonstrate the real-time applicability of the suggested approach.

[1]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[2]  James B. Rawlings,et al.  Efficient moving horizon estimation and nonlinear model predictive control , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[3]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[4]  Wei Kang,et al.  Moving horizon numerical observers of nonlinear control systems , 2006, IEEE Transactions on Automatic Control.

[5]  J. Raisch,et al.  A two-level hybrid control strategy for the start-up of a coupled distillation plant , 2003, 2003 European Control Conference (ECC).

[6]  Mark Cannon,et al.  Efficient nonlinear model predictive control algorithms , 2004, Annu. Rev. Control..

[7]  Willi Jäger,et al.  Modelling of Chemical Reaction Systems , 1981 .

[8]  Jean-Marie Flaus,et al.  Moving horizon state estimation with global convergence using interval techniques: application to biotechnological processes , 2003 .

[9]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[10]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[11]  Frank Allgöwer,et al.  Assessment and Future Directions of Nonlinear Model Predictive Control , 2007 .

[12]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[13]  Henrik Schiøler,et al.  Proceedings of the 2006 IEEE International Conference on Control Applications , 2006 .

[14]  Jay H. Lee,et al.  A moving horizon‐based approach for least‐squares estimation , 1996 .

[15]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications , 2003, Comput. Chem. Eng..

[16]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[17]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[18]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[19]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[20]  L. Biegler,et al.  A FAST COMPUTATIONAL FRAMEWORK FOR LARGE-SCALE MOVING HORIZON ESTIMATION , 2007 .

[21]  JayHyung Lee,et al.  Nonlinear modeling and state estimation for the Tennessee Eastman challenge process , 1995 .

[22]  Sigurd Skogestad,et al.  Offset-free tracking of model predictive control with model mismatch : Experimental results , 2005 .

[23]  Wolfgang Dahmen,et al.  Introduction to Model Based Optimization of Chemical Processes on Moving Horizons , 2001 .

[24]  H. Bock Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics , 1981 .

[25]  Thomas Kailath,et al.  New square-root algorithms for Kalman filtering , 1995, IEEE Trans. Autom. Control..

[26]  Peter Deuflhard,et al.  Numerical Treatment of Inverse Problems in Differential and Integral Equations: Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 - September 3, 1982 , 2012 .

[27]  J. B. Jørgensen,et al.  Numerical Methods for Large Scale Moving Horizon Estimation and Control , 2004 .

[28]  S. Ungarala Computing arrival cost parameters in moving horizon estimation using sampling based filters , 2009 .

[29]  Lorenz T. Biegler,et al.  Dynamic optimization of the Tennessee Eastman process using the OptControlCentre , 2003, Comput. Chem. Eng..

[30]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[31]  Toshiyuki Ohtsuka,et al.  Nonlinear receding-horizon state estimation by real-time optimization technique , 1996 .

[32]  M. Diehl,et al.  Fast nonlinear model predictive control of gasoline engines , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[33]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[34]  Johannes P. Schlöder,et al.  Schnelle Algorithmen für die Zustands- und Parameterschätzung auf bewegten Horizonten (Fast Algorithms for State and Parameter Estimation on Moving Horizons) , 2006, Autom..

[35]  B. Foss,et al.  A new optimization algorithm with application to nonlinear MPC , 2004 .

[36]  M. Diehl,et al.  Fast reduced multiple shooting methods for nonlinear model predictive control , 2007 .

[37]  Jay H. Lee,et al.  Receding Horizon Recursive State Estimation , 1993, 1993 American Control Conference.

[38]  Hans Bock,et al.  A Direct Multiple Shooting Method for Real-Time Optimization of Nonlinear DAE Processes , 2000 .

[39]  Kenneth R. Muske,et al.  Disturbance modeling for offset-free linear model predictive control , 2002 .

[40]  Jay H. Lee,et al.  A least squares formulation for state estimation , 1995 .

[41]  Gabriele Pannocchia,et al.  Disturbance models for offset‐free model‐predictive control , 2003 .

[42]  A. Tornambè High-gain observers for non-linear systems , 1992 .

[43]  Thomas F. Edgar,et al.  Nonlinear state estimation , 1997 .

[44]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[45]  M. Diehl,et al.  Nominal stability of real-time iteration scheme for nonlinear model predictive control , 2005 .

[46]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[47]  V. Becerra,et al.  Applying the extended Kalman filter to systems described by nonlinear differential-algebraic equations , 2001 .

[48]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[49]  Wolfgang Marquardt,et al.  Newton-type receding horizon control and state estimation - a case study , 1996 .