Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans

Abnormal dopaminergic modulation of connectivity between the putamen and cortex is thought to underlie the emergence of levodopa-induced dyskinesias. Herz et al. confirm this directly by showing that in individuals with Parkinson's disease who have taken a single dose of levodopa, changes in connectivity preceding dyskinesias accurately predict their severity.

[1]  Wiklund Ra,et al.  First of two parts , 1997 .

[2]  T. Robbins,et al.  A role for mesencephalic dopamine in activation: commentary on Berridge (2006) , 2007, Psychopharmacology.

[3]  Francesca Morgante,et al.  Motor cortex plasticity in Parkinson's disease and levodopa-induced dyskinesias. , 2006, Brain : a journal of neurology.

[4]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[5]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[6]  J. Nutt,et al.  Effect of brief levodopa holidays on the short‐duration response to levodopa , 1994, Neurology.

[7]  Marianna Amboni,et al.  The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa , 2014, Brain : a journal of neurology.

[8]  Robert A. Hauser,et al.  Levodopa: Past, Present, and Future , 2008, European Neurology.

[9]  P. Jenner,et al.  Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation , 2011, Journal of Neural Transmission.

[10]  Hartwig R. Siebner,et al.  The acute brain response to levodopa heralds dyskinesias in Parkinson disease , 2014, Annals of neurology.

[11]  Kristoffer Hougaard Madsen,et al.  Motivational Tuning of Fronto-Subthalamic Connectivity Facilitates Control of Action Impulses , 2014, The Journal of Neuroscience.

[12]  A. Graybiel Habits, rituals, and the evaluative brain. , 2008, Annual review of neuroscience.

[13]  G. Fink,et al.  Dopaminergic modulation of motor network dynamics in Parkinson’s disease , 2015, Brain : a journal of neurology.

[14]  Paolo Calabresi,et al.  Dopamine-mediated regulation of corticostriatal synaptic plasticity , 2007, Trends in Neurosciences.

[15]  Karl J. Friston,et al.  Bayesian model selection for group studies (vol 46, pg 1005, 2009) , 2009 .

[16]  Jonathan W. Peirce,et al.  PsychoPy—Psychophysics software in Python , 2007, Journal of Neuroscience Methods.

[17]  Paul Greengard,et al.  Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia , 2003, Nature Neuroscience.

[18]  J. Rothwell,et al.  Abnormal bidirectional plasticity-like effects in Parkinson's disease. , 2011, Brain : a journal of neurology.

[19]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[20]  C. Warren Olanow,et al.  Levodopa motor complications in Parkinson's disease , 2000, Trends in Neurosciences.

[21]  P. Redgrave,et al.  Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement , 2011, Neuroscience.

[22]  A. Lang,et al.  Parkinson's disease. Second of two parts. , 1998, The New England journal of medicine.

[23]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[24]  Michael C. Anderson,et al.  The Prefrontal Cortex Achieves Inhibitory Control by Facilitating Subcortical Motor Pathway Connectivity , 2015, The Journal of Neuroscience.

[25]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[26]  Neeraj Kumar,et al.  Levodopa-associated dyskinesia risk among Parkinson disease patients in Olmsted County, Minnesota, 1976-1990. , 2006, Archives of neurology.

[27]  R. Hauser,et al.  Quantitative description of loss of clinical benefit following withdrawal of levodopa–carbidopa and bromocriptine in early Parkinson's disease , 2002, Movement disorders : official journal of the Movement Disorder Society.

[28]  Stefan Klöppel,et al.  Interregional compensatory mechanisms of motor functioning in progressing preclinical neurodegeneration , 2013, NeuroImage.

[29]  A. Oliviero,et al.  Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. , 2002, Brain : a journal of neurology.

[30]  M. Muenter,et al.  Frequency of levodopa‐related dyskinesias and motor fluctuations as estimated from the cumulative literature , 2001, Movement disorders : official journal of the Movement Disorder Society.

[31]  A. Quattrone,et al.  Long‐duration response to levodopa influences the pharmacodynamics of short‐duration response in Parkinson's disease , 1997, Annals of neurology.

[32]  Jamis J. Perrett,et al.  Bonferroni Adjustments in Tests for Regression Coefficients , 2006 .

[33]  Bostjan Likar,et al.  Intensity inhomogeneity correction of multispectral MR images , 2006, NeuroImage.

[34]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[35]  Roger A. Barker,et al.  Dynamic causal modelling of effective connectivity from fMRI: Are results reproducible and sensitive to Parkinson's disease and its treatment? , 2010, NeuroImage.

[36]  Thomas E. Nichols,et al.  Non-white noise in fMRI: Does modelling have an impact? , 2006, NeuroImage.

[37]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[38]  Ilya M. Veer,et al.  The impact of “physiological correction” on functional connectivity analysis of pharmacological resting state fMRI , 2013, NeuroImage.

[39]  M. Cenci,et al.  Post‐ versus presynaptic plasticity in L‐DOPA‐induced dyskinesia , 2006, Journal of neurochemistry.

[40]  A. Lang,et al.  Parkinson's disease. First of two parts. , 1998, The New England journal of medicine.

[41]  D. Kirik,et al.  Presynaptic dopaminergic compartment determines the susceptibility to L-DOPA–induced dyskinesia in rats , 2010, Proceedings of the National Academy of Sciences.

[42]  N H Holford,et al.  The response to levodopa in parkinson's disease: Imposing pharmacological law and order , 1996, Annals of neurology.