Spatial regularity among retinal neurons

[1]  B. Reese,et al.  The role of tangential dispersion in retinal mosaic formation , 2002, Progress in Retinal and Eye Research.

[2]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[3]  B. Finlay,et al.  Scaling the Retina, Micro and Macro , 1998 .

[4]  Jeremy E. Cook,et al.  Getting to Grips with Neuronal Diversity , 1998 .

[5]  A. Reichenbach,et al.  Phylogenetic constraints on retinal organisation and development , 1995, Progress in Retinal and Eye Research.

[6]  J. Cook,et al.  Large retinal ganglion cells that form independent, regular mosaics in the bufonoid frogs Bufo marinus and Litoria moorei , 1999, Visual Neuroscience.

[7]  R. W. Rodieck The density recovery profile: A method for the analysis of points in the plane applicable to retinal studies , 1991, Visual Neuroscience.

[8]  G. H. Jacobs,et al.  Modelling the mosaic organization of rod and cone photoreceptors with a minimal‐spacing rule , 1999, The European journal of neuroscience.

[9]  Atsushi Mochizuki,et al.  Pattern formation of the cone mosaic in the zebrafish retina: a cell rearrangement model. , 2002, Journal of theoretical biology.

[10]  L. Chalupa,et al.  Development of ON and OFF Retinal Ganglion Cell Mosaics , 1998 .

[11]  K. Shimai,et al.  Morphological development of retinal ganglion cells in the chick embryo , 1979, Experimental Neurology.

[12]  L. Galli-Resta Patterning the vertebrate retina: the early appearance of retinal mosaics. , 1998, Seminars in cell & developmental biology.

[13]  S. Mills,et al.  Unusual coupling patterns of a cone bipolar cell in the rabbit retina , 1999, Visual Neuroscience.

[14]  Y. Iwasa,et al.  Formation of cone mosaic of zebrafish retina. , 1999, Journal of theoretical biology.

[15]  J. Cook,et al.  Regular mosaics of large displaced and non‐displaced ganglion cells in the retina of a cichlid fish , 1991, The Journal of comparative neurology.

[16]  D. I. Vaney,et al.  Patterns of neuronal coupling in the retina , 1994, Progress in Retinal and Eye Research.

[17]  B. Boycott,et al.  The mosaic of horizontal cells in the macaque monkey retina: With a comment on biplexiform ganglion cells , 2000, Visual Neuroscience.

[18]  R. Williams,et al.  The control of neuron number. , 1988, Annual review of neuroscience.

[19]  P. Raymond,et al.  Developmental patterning of rod and cone photoreceptors in embryonic zebrafish , 1995, The Journal of comparative neurology.

[20]  C. Hawryshyn,et al.  Cone photoreceptor topography in the retina of sexually mature Pacific salmonid fishes , 1997, The Journal of comparative neurology.

[21]  A. Hendrickson,et al.  Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones , 2000, The Journal of comparative neurology.

[22]  J. Cook,et al.  Somatic and Dendritic Mosaics Formed by Large Ganglion Cells in the Retina of the Common House Gecko (Hemidactylus frenatus) , 1998, Brain, Behavior and Evolution.

[23]  T. Maniatis,et al.  A Striking Organization of a Large Family of Human Neural Cadherin-like Cell Adhesion Genes , 1999, Cell.

[24]  R. Masland,et al.  Developmental variation in the structure of the retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[26]  P. Rujan,et al.  A geometrical description of horizontal cell networks in the turtle retina , 1993, Brain Research.

[27]  R. Williams,et al.  Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat's optic nerve , 1986, The Journal of comparative neurology.

[28]  D. L. Stenkamp,et al.  Cone mosaic development in the goldfish retina is independent of rod neurogenesis and differentiation , 2000, The Journal of comparative neurology.

[29]  R. Wong,et al.  Cell-type specific dendritic contacts between retinal ganglion cells during development. , 2001, Journal of neurobiology.

[30]  J. Cook,et al.  Spatial properties of retinal mosaics: An empirical evaluation of some existing measures , 1996, Visual Neuroscience.

[31]  DI Vaney,et al.  Territorial organization of direction-selective ganglion cells in rabbit retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  J. Cook,et al.  Evidence for spatial regularity among retinal ganglion cells that project to the accessory optic system in a frog, a reptile, a bird, and a mammal , 2001, Visual Neuroscience.

[33]  Liqun Luo,et al.  How do dendrites take their shape? , 2001, Nature Neuroscience.

[34]  U. Heberlein,et al.  Mechanisms of drosophila retinal morphogenesis: The virtues of being progressive , 1995, Cell.

[35]  N. Swindale Cortical organization: Modules, Polymaps and mosaics , 1998, Current Biology.

[36]  C. Stevens,et al.  Neuronal diversity: Too many cell types for comfort? , 1998, Current Biology.

[37]  Cori Bargmann,et al.  Dynamic regulation of axon guidance , 2001, Nature Neuroscience.

[38]  S. Pfaff,et al.  Transcriptional networks regulating neuronal identity in the developing spinal cord , 2001, Nature Neuroscience.

[39]  B. Reese,et al.  Mosaics of Islet-1-Expressing Amacrine Cells Assembled by Short-Range Cellular Interactions , 1997, The Journal of Neuroscience.

[40]  R. Kalil,et al.  Dendritic field development of retinal ganglion cells in the cat following neonatal damage to visual cortex: Evidence for cell class specific interactions , 1998, The Journal of comparative neurology.

[41]  Antonio Baonza,et al.  A primary role for the epidermal growth factor receptor in ommatidial spacing in the Drosophila eye , 2001, Current Biology.

[42]  B. Reese,et al.  Clonal expansion and cell dispersion in the developing mouse retina , 1999, The European journal of neuroscience.

[43]  Y. Jan,et al.  Control of Dendritic Field Formation in Drosophila The Roles of Flamingo and Competition between Homologous Neurons , 2000, Neuron.

[44]  R W Rodieck,et al.  Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. , 1983, Brain, behavior and evolution.

[45]  L. Galli-Resta,et al.  Local, possibly contact-mediated signalling restricted to homotypic neurons controls the regular spacing of cells within the cholinergic arrays in the developing rodent retina. , 2000, Development.

[46]  R H Masland,et al.  Spatial order within but not between types of retinal neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Cepko,et al.  Clonal analysis in the chicken retina reveals tangential dispersion of clonally related cells. , 1994, Developmental biology.

[48]  P. Raymond,et al.  Function for Hedgehog genes in zebrafish retinal development. , 2000, Developmental biology.

[49]  E. Strettoi,et al.  The spatial organization of cholinergic mosaics in the adult mouse retina , 2000, The European journal of neuroscience.

[50]  S. Bloomfield,et al.  Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina , 1997, The Journal of comparative neurology.

[51]  S. Bisti,et al.  Electrical activity regulates dendritic reorganization in ganglion cells after neonatal retinal lesion in the cat , 1999, The Journal of comparative neurology.

[52]  Helga Kolb,et al.  The mammalian photoreceptor mosaic-adaptive design , 2000, Progress in Retinal and Eye Research.

[53]  E. Mecke,et al.  Ganglion cells in the frog retina: Discriminant analysis of histological classes , 1989, Vision Research.

[54]  Scott E. Fraser,et al.  The neuronal naturalist: watching neurons in their native habitat , 2001, Nature Neuroscience.

[55]  P. Bryant Filopodia: Fickle fingers of cell fate? , 1999, Current Biology.

[56]  S. Collin,et al.  Ontogenetic changes in the retinal photoreceptor mosaic in a fish, the black bream, Acanthopagrus butcheri , 1999, The Journal of comparative neurology.

[57]  R. Wong,et al.  Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis , 2001, Nature Neuroscience.

[58]  J. Cook,et al.  Retinal mosaics: new insights into an old concept , 2000, Trends in Neurosciences.

[59]  L. Chalupa,et al.  Activity‐regulated cell death contributes to the formation of ON and OFF α ganglion cell mosaics , 1998 .

[60]  C. Curcio,et al.  Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy. , 1992, Visual neuroscience.

[61]  S. Bloomfield,et al.  Dendritic arbors of large-field ganglion cells show scaled growth during expansion of the goldfish retina: a study of morphometric and electrotonic properties , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  Evelyne Sernagor,et al.  Development of Retinal Ganglion Cell Structure and Function , 2001, Progress in Retinal and Eye Research.

[63]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[64]  J. Stone,et al.  The interpretation of variation in the classification of nerve cells. , 1980, Brain, behavior and evolution.

[65]  J. Troy,et al.  Modeling cat retinal beta-cell arrays , 2000, Visual Neuroscience.

[66]  H. Wässle,et al.  The mosaic of nerve cells in the mammalian retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[67]  Vision: Is there more than meets the eye? , 1991 .

[68]  H. Wässle,et al.  Amacrine cells in the ganglion cell layer of the cat retina , 1987, The Journal of comparative neurology.

[69]  L. Chalupa,et al.  Subgroup of alpha ganglion cells in the adult cat retina is immunoreactive for somatostatin , 1991, The Journal of comparative neurology.

[70]  C. Neumann,et al.  Patterning of the zebrafish retina by a wave of sonic hedgehog activity. , 2000, Science.

[71]  Arjen van Ooyen,et al.  Lateral cell movement driven by dendritic interactions is sufficient to form retinal mosaics , 2000, Network.

[72]  L. Carney,et al.  Evidence for two distinct mechanisms of neurogenesis and cellular pattern formation in regenerated goldfish retinas , 2001, The Journal of comparative neurology.

[73]  F. Amthor,et al.  Spatial organization of retinal information about the direction of image motion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Kjell Engström,et al.  Cone Types and Cone Arrangements in Teleost Retinae , 1963 .

[75]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[76]  R. Masland Neuronal diversity in the retina , 2001, Current Opinion in Neurobiology.

[77]  W. Stell,et al.  Retinal structure in the smooth dogfish, Mustelus canis: General description and light microscopy of giant ganglion cells , 1973, The Journal of comparative neurology.