Instability and breakdown of a vertical vortex pair in a strongly stratified fluid

The dynamics of a counter-rotating pair of columnar vortices aligned parallel to a stable density gradient are investigated. By means of numerical simulation, we extend the linear analyses and laboratory experiments of Billant & Chomaz (J. Fluid Mech. vol. 418, p. 167; vol. 419, pp. 29, 65 (2000)) to the fully nonlinear, large-Reynolds-number regime. A range of stratifications and vertical length scales is considered, with Frh < 0.2 and 0.1 < Frz < 10. Here Frh ≡ U/(NR) and Frz ≡ Ukz/N are the horizontal and vertical Froude numbers, U and R are the horizontal velocity and length scales of the vortices, N is the Brunt–Väisälä frequency, and 2π/kz is the vertical wavelength of a small initial perturbation. At early times with Frz < 1, linear predictions for the zigzag instability are reproduced. Short-wavelength perturbations with Frz > 1 are found to be unstable as well, with growth rates only slightly less than those of the zigzag instability but with very different structure. At later times, the large-Reynolds-number evolution diverges profoundly from the moderate-Reynolds-number laboratory experiments as the instabilities transition to turbulence. For the zigzag instability, this transition occurs when density perturbations generated by the vortex bending become gravitationally unstable. The resulting turbulence rapidly destroys the vortex pair. We derive the criterion η/R ≈ 0.2/Frz for the onset of gravitational instability, where η is the maximum horizontal displacement of the bent vortices, and refine it to account for a finite twisting disturbance. Our simulations agree for the fastest growing wavelengths 0.3 < Frz < 0.8. Short perturbations with Frz > 1 saturate at low amplitude, preserving the columnar structure of the vortices well after the generation of turbulence. Viscosity is shown to suppress the transition to turbulence for Reynolds number Re ≲ 80/Frh, yielding laminar dynamics and, under certain conditions, pancake vortices like those observed in the laboratory.

[1]  Len G. Margolin,et al.  Implicit Turbulence Modeling for High Reynolds Number Flows , 2001 .

[2]  W. Grabowski,et al.  The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .

[3]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[4]  R. Pierrehumbert,et al.  Universal short-wave instability of two-dimensional eddies in an inviscid fluid. , 1986, Physical review letters.

[5]  J. Riley,et al.  Direct numerical simulations of homogeneous turbulence in density‐stratified fluids , 2008 .

[6]  J. Chomaz,et al.  Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid , 2000, Journal of Fluid Mechanics.

[7]  Piotr K. Smolarkiewicz,et al.  Building resolving large-eddy simulations and comparison with wind tunnel experiments , 2007, J. Comput. Phys..

[8]  F. Laporte,et al.  Direct numerical simulations of the elliptic instability of a vortex pair , 2000 .

[9]  Bernardus J. Geurts,et al.  Turbulent flow computation , 2004 .

[10]  Sutanu Sarkar,et al.  Dynamics of a stratified shear layer with horizontal shear , 2006, Journal of Fluid Mechanics.

[11]  Douglas K. Lilly,et al.  Stratified Turbulence and the Mesoscale Variability of the Atmosphere , 1983 .

[12]  Florent Laporte,et al.  Theoretical predictions for the elliptical instability in a two-vortex flow , 2002, Journal of Fluid Mechanics.

[13]  J. Prusa,et al.  An all-scale anelastic model for geophysical flows: dynamic grid deformation , 2003 .

[14]  S. A. Chaplygin One case of vortex motion in fluid , 2007 .

[15]  Three-dimensional stability of an elliptical vortex in a straining field , 1984 .

[16]  J. Chomaz,et al.  Theoretical analysis of the zigzag instability of a vertical columnar vortex pair in a strongly stratified fluid , 1998, Journal of Fluid Mechanics.

[17]  P. Smolarkiewicz,et al.  Effective eddy viscosities in implicit large eddy simulations of turbulent flows , 2003 .

[18]  V. Vladimirov,et al.  Three-dimensional instability of an elliptic Kirchhoff vortex , 1988 .

[19]  Lord Kelvin,et al.  Vibrations of a columnar vortex , 1880 .

[20]  P. K. Smolarkiewicz,et al.  VARIATIONAL METHODS FOR ELLIPTIC PROBLEMS IN FLUID MODELS , 2000 .

[21]  Ulrich Schumann,et al.  Subgrid length-scales for large-eddy simulation of stratified turbulence , 1991 .

[22]  Denis Sipp,et al.  Widnall instabilities in vortex pairs , 2003 .

[23]  P. Smolarkiewicz,et al.  Solitary wave effects north of Strait of Messina , 2007 .

[24]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .

[25]  Robert F. Erbacher Visualization And Data Analysis 2004 , 2002 .

[26]  Aspect ratio effects in quasi-two-dimensional turbulence , 2005 .

[27]  Y. Fukumoto,et al.  Three‐dimensional instability of strained vortices in a stably stratified fluid , 1992 .

[28]  Bayly Three-dimensional instability of elliptical flow. , 1986, Physical review letters.

[29]  J. Herring,et al.  Numerical experiments in forced stably stratified turbulence , 1989, Journal of Fluid Mechanics.

[30]  P. Bartello,et al.  Stratified turbulence dominated by vortical motion , 2004, Journal of Fluid Mechanics.

[31]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[32]  L. Margolin,et al.  MPDATA: A positive definite solver for geophysical flows , 1997 .

[33]  S. Crow Stability theory for a pair of trailing vortices , 1970 .

[34]  J. Chomaz,et al.  Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid , 2000, Journal of Fluid Mechanics.

[35]  Jean-Marc Chomaz,et al.  Three-dimensional stability of a vortex pair , 1999 .

[36]  G. J. F. van Heijst,et al.  On Chaplygin's investigations of two-dimensional vortex structures in an inviscid fluid , 1994, Journal of Fluid Mechanics.

[37]  J. Riley,et al.  Dynamics of turbulence strongly influenced by buoyancy , 2003 .

[38]  Piotr K. Smolarkiewicz,et al.  Multidimensional positive definite advection transport algorithm: an overview , 2006 .

[39]  J. Chomaz,et al.  Nonlinear evolution of the zigzag instability in stratified fluids: a shortcut on the route to dissipation , 2008, Journal of Fluid Mechanics.

[40]  Sheila E. Widnall,et al.  The stability of short waves on a straight vortex filament in a weak externally imposed strain field , 1976, Journal of Fluid Mechanics.

[41]  S. W. Thomson,et al.  XXIV. Vibrations of a columnar vortex , 1880 .

[42]  Nils Wedi,et al.  Direct Numerical Simulation of the Plumb–McEwan Laboratory Analog of the QBO , 2006 .

[43]  Piotr K. Smolarkiewicz,et al.  FORWARD-IN-TIME DIFFERENCING FOR FLUIDS: SIMULATION OF GEOPHYSICAL TURBULENCE , 2002 .

[44]  Jean-Marc Chomaz,et al.  Self-similarity of strongly stratified inviscid flows , 2001 .

[45]  William J. Rider,et al.  Modeling turbulent flow with implicit LES , 2006 .

[46]  Len G. Margolin,et al.  Dissipation in Implicit Turbulence Models: A Computational Study , 2006 .

[47]  J. Prusa,et al.  Towards mesh adaptivity for geophysical turbulence: continuous mapping approach , 2005 .

[48]  J. Chomaz,et al.  Elliptic and zigzag instabilities on co-rotating vertical vortices in a stratified fluid , 2006, Journal of Fluid Mechanics.

[49]  D. W. Moore,et al.  The instability of a straight vortex filament in a strain field , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  John P. Clyne,et al.  A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations , 2005, IS&T/SPIE Electronic Imaging.

[51]  Fabian Waleffe,et al.  On the three-dimensional instability of strained vortices , 1990 .

[52]  T. L. E W E K E † A N,et al.  Cooperative elliptic instability of a vortex pair , 2022 .

[53]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[54]  Peter J. Thomas,et al.  The observation of the simultaneous development of a long- and a short-wave instability mode on a vortex pair , 1994, Journal of Fluid Mechanics.

[55]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[56]  E. Lindborg,et al.  The energy cascade in a strongly stratified fluid , 2006, Journal of Fluid Mechanics.

[57]  J. Chomaz,et al.  The effect of planetary rotation on the zigzag instability of co-rotating vortices in a stratified fluid , 2006, Journal of Fluid Mechanics.

[58]  P. Drazin On the Steady Flow of a Fluid of Variable Density Past an Obstacle , 1961 .