Anatomical evidence for classical and extra-classical receptive field completion across the discontinuous horizontal meridian representation of primate area V2.

In primates, a split of the horizontal meridian (HM) representation at the V2 rostral border divides this area into dorsal (V2d) and ventral (V2v) halves (representing lower and upper visual quadrants, respectively), causing retinotopically neighboring loci across the HM to be distant within V2. How is perceptual continuity maintained across this discontinuous HM representation? Injections of neuroanatomical tracers in marmoset V2d demonstrated that cells near the V2d rostral border can maintain retinotopic continuity within their classical and extra-classical receptive field (RF), by making both local and long-range intra- and interareal connections with ventral cortex representing the upper visual quadrant. V2d neurons located <0.9-1.3 mm from the V2d rostral border, whose RFs presumably do not cross the HM, make nonretinotopic horizontal connections with V2v neurons in the supra- and infragranular layers. V2d neurons located <0.6-0.9 mm from the border, whose RFs presumably cross the HM, in addition make retinotopic local connections with V2v neurons in layer 4. V2d neurons also make interareal connections with upper visual field regions of extrastriate cortex, but not of MT or MTc outside the foveal representation. Labeled connections in ventral cortex appear to represent the "missing" portion of the connectional fields in V2d across the HM. We conclude that connections between dorsal and ventral cortex can create visual field continuity within a second-order discontinuous visual topography.

[1]  J. Kaas,et al.  Extrastriate Cortex in Primates , 1997, Cerebral Cortex.

[2]  M. Sur,et al.  Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains , 1996, Journal of Neuroscience Methods.

[3]  J. Kaas,et al.  Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[4]  W H Bosking,et al.  Functional Specificity of Callosal Connections in Tree Shrew Striate Cortex , 2000, The Journal of Neuroscience.

[5]  J. Allman,et al.  The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (aotus trivirgatus) , 1975, Brain Research.

[6]  J. Kaas,et al.  Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys , 1988, Visual Neuroscience.

[7]  M. Silverman,et al.  Functional organization of the second cortical visual area in primates. , 1983, Science.

[8]  S. Zeki Interhemispheric connections of prestriate cortex in monkey. , 1970, Brain research.

[9]  I. Llewellyn-Smith,et al.  Cholera toxin B‐gold, a retrograde tracer that can be used in light and electron microscopic immunocytochemical studies , 1990, The Journal of comparative neurology.

[10]  J. Tigges,et al.  Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri) , 1981, The Journal of comparative neurology.

[11]  M. Rosa Visuotopic Organization of Primate Extrastriate Cortex , 1997 .

[12]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[13]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[14]  D. Hubel,et al.  Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey , 1981, Nature.

[15]  M. Jouvet,et al.  Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons , 1990, Brain Research.

[16]  H. Kuypers,et al.  Diamidino yellow dihydrochloride (DY·2HCl); a new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell , 2004, Experimental Brain Research.

[17]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[18]  J. Kaas Theories of Visual Cortex Organization in Primates , 1997 .

[19]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[20]  J. Kaas,et al.  Evidence for a Modified V3 with Dorsal and Ventral Halves in Macaque Monkeys , 2002, Neuron.

[21]  F. Condé Further studies on the use of the fluorescent tracers fast blue and diamidino yellow: Effective uptake area and cellular storage sites , 1987, Journal of Neuroscience Methods.

[22]  Jon H. Kaas,et al.  Cortical projections of area 18 in owl monkeys , 1977, Vision Research.

[23]  J. W. Lewis,et al.  Two rules for callosal connectivity in striate cortex of the rat , 1995, The Journal of comparative neurology.

[24]  Henry Kennedy,et al.  Functional implications of the anatomical organization of the callosal projections of visual areas V1 and V2 in the macaque monkey , 1988, Behavioural Brain Research.

[25]  H. Kennedy,et al.  Topography of the afferent connectivity of area 17 in the macaque monkey: A double‐labelling study , 1986, The Journal of comparative neurology.

[26]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[27]  J. T. Weber,et al.  Interhemispheric connections in the visual cortex of the squirrel monkey (Saimiri sciureus) , 1987, The Journal of comparative neurology.

[28]  M. Rosa,et al.  Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey , 2000, The Journal of comparative neurology.

[29]  B. O'Brien,et al.  Organization of callosal linkages in visual area V2 of macaque monkey , 2000, The Journal of comparative neurology.

[30]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[31]  L A Krubitzer,et al.  The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates , 1993, The Journal of comparative neurology.

[32]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[33]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[34]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  A. Angelucci,et al.  Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. , 2006, Progress in brain research.

[36]  Marcello G P Rosa,et al.  Quantitative analysis of the corticocortical projections to the middle temporal area in the marmoset monkey: evolutionary and functional implications. , 2006, Cerebral cortex.

[37]  J. Kaas,et al.  Connectional and Architectonic Evidence for Dorsal and Ventral V3, and Dorsomedial Area in Marmoset Monkeys , 2001, The Journal of Neuroscience.

[38]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  K. Rockland,et al.  A reticular pattern of intrinsic connections in primate area V2 (area 18) , 1985, The Journal of comparative neurology.

[40]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[41]  J Bullier,et al.  Organization of the callosal connections of visual areas v1 and v2 in the macaque monkey , 1986, The Journal of comparative neurology.

[42]  D. V. van Essen,et al.  The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  A. L. Humphrey,et al.  Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  A. Morel,et al.  Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  Leslie G. Ungerleider,et al.  Cortical projections of area V2 in the macaque. , 1997, Cerebral cortex.

[46]  J. Kaas,et al.  Cortical connections of the dorsomedial visual area in new world owl monkeys (Aotus trivirgatus) and squirrel monkeys (Saimiri sciureus) , 1998, The Journal of comparative neurology.

[47]  Lawrence C. Sincich,et al.  Divided by Cytochrome Oxidase: A Map of the Projections from V1 to V2 in Macaques , 2002, Science.

[48]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[49]  L Krubitzer,et al.  Convergence of processing channels in the extrastriate cortex of monkeys , 1990, Visual Neuroscience.

[50]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[51]  R. Malach,et al.  Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. , 1994, Cerebral cortex.

[52]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[53]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[54]  M. Rosa,et al.  A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision , 2006, The European journal of neuroscience.

[55]  J. Kaas,et al.  Topographic patterns of V2 cortical connections in macaque monkeys , 1996, The Journal of comparative neurology.

[56]  J. Tigges,et al.  Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri) , 1970, The Journal of comparative neurology.

[57]  B. Cragg The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. , 1969, Vision research.

[58]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[59]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  A. Vania Apkarian,et al.  Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey , 1992, Journal of Neuroscience Methods.

[61]  S. Zeki,et al.  Simultaneous anatomical demonstration of the representation of the vertical and horizontal meridians in areas V2 and V3 of rhesus monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[62]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[63]  J. Kaas,et al.  The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. , 1974, Brain research.

[64]  J. Kaas,et al.  The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). , 1975 .

[65]  H. Ericson,et al.  Tracing of neuronal connections with cholera toxin subunit B: light and electron microscopic immunohistochemistry using monoclonal antibodies , 1988, Journal of Neuroscience Methods.

[66]  J. Tigges,et al.  Efferent cortico‐cortical fiber connections of area 18 in the squirrel monkey (Saimiri) , 1974, The Journal of comparative neurology.

[67]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[68]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[69]  J. Olavarria,et al.  Non‐mirror‐symmetric patterns of callosal linkages in areas 17 and 18 in cat visual cortex , 1996, The Journal of comparative neurology.

[70]  J. Kaas,et al.  Topographic patterns of v2 cortical connections in a prosimian primate (Galago garnetti) , 2001, The Journal of comparative neurology.

[71]  J. Kaas,et al.  Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus) , 1984, The Journal of comparative neurology.

[72]  R. Myers,et al.  Commissural connections between occipital lobes of the monkey , 1962, The Journal of comparative neurology.